Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Androgen receptor variant-driven prostate cancer: clinical implications and therapeutic targeting

Abstract

While there are myriad mechanisms of primary and acquired resistance to conventional and next-generation hormonal therapies in prostate cancer, the potential role of androgen receptor splice variants (AR-Vs) has recently gained momentum. AR-Vs are abnormally truncated isoforms of the androgen receptor (AR) protein that lack the COOH-terminal domain but retain the NH2-terminal domain and DNA-binding domain and are thus constitutively active even in the absence of ligands. Although multiple preclinical studies have previously implicated AR-Vs in the development of castration resistance as well as resistance to abiraterone and enzalutamide, recent technological advances have made it possible to reliably detect and quantify AR-Vs from human clinical tumor specimens including blood samples. Initial clinical studies have now shown that certain AR-Vs, in particular AR-V7, may be associated with resistance to abiraterone and enzalutamide but not taxane chemotherapies when detected in circulating tumor cells. Efforts are now underway to clinically validate AR-V7 as a relevant treatment-selection biomarker in the context of other key genomic aberrations in men with metastatic castration-resistant prostate cancer. Additional efforts are underway to therapeutically target both AR and AR-Vs either directly or indirectly. Whether AR-Vs represent drivers of castration-resistant prostate cancer, or whether they are simply passenger events associated with aggressive disease or clonal heterogeneity, will ultimately be answered only through these types of clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Huggins C, Hodges CV . Studies on prostatic cancer. I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. 1941. J Urol 2002; 167: 948–951.

    Article  CAS  PubMed  Google Scholar 

  2. Attard G, Cooper CS, de Bono JS . Steroid hormone receptors in prostate cancer: a hard habit to break? Cancer Cell 2009; 16: 458–462.

    Article  CAS  PubMed  Google Scholar 

  3. Chen Y, Sawyers CL, Scher HI . Targeting the androgen receptor pathway in prostate cancer. Curr Opin Pharmacol 2008; 8: 440–448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Beer TM, Armstrong AJ, Rathkopf DE, Loriot Y, Sternberg CN, Higano CS et al. Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J Med 2014; 371: 424–433.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. deBono JS, Logothetis CJ, Molina A, Fizazi K, North S, Chu L et al. Abiraterone and increased survival in metastatic prostate cancer. N Engl J Med 2011; 364: 1995–2005.

    Article  CAS  Google Scholar 

  6. Ryan CJ, Smith MR, de Bono JS, Molina A, Logothetis CJ, de Souza P et al. Abiraterone in metastatic prostate cancer without previous chemotherapy. N Engl J Med 2013; 368: 138–148.

    Article  CAS  PubMed  Google Scholar 

  7. Scher HI, Fizazi K, Saad F, Taplin ME, Sternberg CN, Miller K et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 2012; 367: 1187–1197.

    Article  CAS  PubMed  Google Scholar 

  8. Nakazawa M, Antonarakis ES, Luo J . Androgen receptor splice variants in the era of enzalutamide and abiraterone. Horm Cancer 2014; 5: 265–273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ferraldeschi R, Welti J, Luo J, Attard G, de Bono JS . Targeting the androgen receptor pathway in castration-resistant prostate cancer: progresses and prospects. Oncogene 2014.

  10. Ware KE, Garcia-Blanco MA, Armstrong AJ, Dehm SM . Biologic and clinical significance of androgen receptor variants in castration resistant prostate cancer. Endocr Relat Cancer 2014; 21: T87–T103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Watson PA, Arora VK, Sawyers CL . Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat Rev Cancer 2015; 15: 701–711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Merson S, Yang ZH, Brewer D, Olmos D, Eichholz A, McCarthy F et al. Focal amplification of the androgen receptor gene in hormone-naive human prostate cancer. Br J Cancer 2014; 110: 1655–1662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM et al. Integrative clinical genomics of advanced prostate cancer. Cell 2015; 161: 1215–1228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Karantanos T, Evans CP, Tombal B, Thompson TC, Montironi R, Isaacs WB . Understanding the mechanisms of androgen deprivation resistance in prostate cancer at the molecular level. Eur Urol 2015; 67: 470–479.

    Article  CAS  PubMed  Google Scholar 

  15. Small EJ, Huang J, Youngren J, Sokolov A, Aggarwal RR, Thomas G et alCharacterization of neuroendocrine prostate cancer (NEPC) in patients with metastatic castration resistant prostate cancer (mCRPC) resistant to abiraterone (Abi) or enzalutamide (Enz): preliminary results from the SU2C/PCF/AACR West Coast Prostate Cancer Dream Team (WCDT). ASCO Annual Meeting Proceedings: abstr 5003 (2015).

  16. Lu C, Luo J . Decoding the androgen receptor splice variants. Transl Androl Urol 2013; 2: 178–186.

    PubMed  PubMed Central  Google Scholar 

  17. Dehm SM, Schmidt LJ, Heemers HV, Vessella RL, Tindall DJ . Splicing of a novel androgen receptor exon generates a constitutively active androgen receptor that mediates prostate cancer therapy resistance. Cancer Res 2008; 68: 5469–5477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guo Z, Yang X, Sun F, Jiang R, Linn DE, Chen H et al. A novel androgen receptor splice variant is up-regulated during prostate cancer progression and promotes androgen depletion-resistant growth. Cancer Res 2009; 69: 2305–2313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hu R, Dunn TA, Wei S, Isharwal S, Veltri RW, Humphreys E et al. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res 2009; 69: 16–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sun S, Sprenger CC, Vessella RL, Haugk K, Soriano K, Mostaghel EA et al. Castration resistance in human prostate cancer is conferred by a frequently occurring androgen receptor splice variant. J Clin Invest 2010; 120: 2715–2730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Watson PA, Chen YF, Balbas MD, Wongvipat J, Socci ND, Viale A et al. Constitutively active androgen receptor splice variants expressed in castration-resistant prostate cancer require full-length androgen receptor. Proc Natl Acad Sci USA 2010; 107: 16759–16765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hu R, Lu C, Mostaghel EA, Yegnasubramanian S, Gurel M, Tannahill C et al. Distinct transcriptional programs mediated by the ligand-dependent full-length androgen receptor and its splice variants in castration-resistant prostate cancer. Cancer Res 2012; 72: 3457–3462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yu Z, Chen S, Sowalsky AG, Voznesensky OS, Mostaghel EA, Nelson PS et al. Rapid induction of androgen receptor splice variants by androgen deprivation in prostate cancer. Clin Cancer Res 2014; 20: 1590–1600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mostaghel EA, Marck BT, Plymate SR, Vessella RL, Balk S, Matsumoto AM et al. Resistance to CYP17A1 inhibition with abiraterone in castration-resistant prostate cancer: induction of steroidogenesis and androgen receptor splice variants. Clin Cancer Res 2011; 17: 5913–5925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hornberg E, Ylitalo EB, Crnalic S, Antti H, Stattin P, Widmark A et al. Expression of androgen receptor splice variants in prostate cancer bone metastases is associated with castration-resistance and short survival. PLoS One 2011; 6: e19059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hu R, Isaacs WB, Luo J . A snapshot of the expression signature of androgen receptor splicing variants and their distinctive transcriptional activities. Prostate 2011; 71: 1656–1667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Antonarakis ES, Lu C, Wang H, Luber B, Nakazawa M, Roeser JC et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med 2014; 371: 1028–1038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nyquist MD, Li Y, Hwang TH, Manlove LS, Vessella RL, Silverstein KA et al. TALEN-engineered AR gene rearrangements reveal endocrine uncoupling of androgen receptor in prostate cancer. Proc Natl Acad Sci USA 2013; 110: 17492–17497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chan SC, Dehm SM . Constitutive activity of the androgen receptor. Adv Pharmacol 2014; 70: 327–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yuan X, Cai C, Chen S, Chen S, Yu Z, Balk SP . Androgen receptor functions in castration-resistant prostate cancer and mechanisms of resistance to new agents targeting the androgen axis. Oncogene 2014; 33: 2815–2825.

    Article  CAS  PubMed  Google Scholar 

  31. Dehm SM, Regan KM, Schmidt LJ, Tindall DJ . Selective role of an NH2-terminal WxxLF motif for aberrant androgen receptor activation in androgen depletion independent prostate cancer cells. Cancer Res 2007; 67: 10067–10077.

    Article  CAS  PubMed  Google Scholar 

  32. Bohrer LR, Liu P, Zhong J, Pan Y, Angstman J, Brand LJ et al. FOXO1 binds to the TAU5 motif and inhibits constitutively active androgen receptor splice variants. Prostate 2013; 73: 1017–1027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chan SC, Selth LA, Li Y, Nyquist MD, Miao L, Bradner JE et al. Targeting chromatin binding regulation of constitutively active AR variants to overcome prostate cancer resistance to endocrine-based therapies. Nucleic Acids Res 2015; 43: 5880–5897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu D, Zhan Y, Qi Y, Cao B, Bai S, Xu W et al. Androgen receptor splice variants dimerize to transactivate target genes. Cancer Res 2015; 75: 3663–3671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. van Royen ME, van Cappellen WA, de Vos C, Houtsmuller AB, Trapman J . Stepwise androgen receptor dimerization. J Cell Sci 2012; 125: 1970–1979.

    Article  CAS  PubMed  Google Scholar 

  36. Cutress ML, Whitaker HC, Mills IG, Stewart M, Neal DE . Structural basis for the nuclear import of the human androgen receptor. J Cell Sci 2008; 121: 957–968.

    Article  CAS  PubMed  Google Scholar 

  37. Chan SC, Li Y, Dehm SM . Androgen receptor splice variants activate androgen receptor target genes and support aberrant prostate cancer cell growth independent of canonical androgen receptor nuclear localization signal. J Biol Chem 2012; 287: 19736–19749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Saporita AJ, Zhang Q, Navai N, Dincer Z, Hahn J, Cai X et al. Identification and characterization of a ligand-regulated nuclear export signal in androgen receptor. J Biol Chem 2003; 278: 41998–42005.

    Article  CAS  PubMed  Google Scholar 

  39. Antonarakis ES, Luo J . Prostate cancer: AR splice variant dimerization-clinical implications. Nat Rev Urol 2015; 12: 431–433.

    Article  CAS  PubMed  Google Scholar 

  40. Liang M, Adisetiyo H, Liu X, Liu R, Gill P, Roy-Burman P et al. Identification of androgen receptor splice variants in the Pten deficient murine prostate cancer model. PLoS One 2015; 10: e0131232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tepper CG, Boucher DL, Ryan PE, Ma AH, Xia L, Lee LF et al. Characterization of a novel androgen receptor mutation in a relapsed CWR22 prostate cancer xenograft and cell line. Cancer Res 2002; 62: 6606–6614.

    CAS  PubMed  Google Scholar 

  42. Yang L, Lin C, Jin C, Yang JC, Tanasa B, Li W et al. lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature 2013; 500: 598–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cancer Genome Atlas Research Network. Electronic address scmo, Cancer Genome Atlas Research N. The Molecular Taxonomy of Primary Prostate Cancer. Cell 2015; 163: 1011–1025.

    Article  CAS  Google Scholar 

  44. Miyamoto DT, Zheng Y, Wittner BS, Lee RJ, Zhu H, Broderick KT et al. RNA-Seq of single prostate CTCs implicates noncanonical Wnt signaling in antiandrogen resistance. Science 2015; 349: 1351–1356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li Y, Alsagabi M, Fan D, Bova GS, Tewfik AH, Dehm SM . Intragenic rearrangement and altered RNA splicing of the androgen receptor in a cell-based model of prostate cancer progression. Cancer Res 2011; 71: 2108–2117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li Y, Chan SC, Brand LJ, Hwang TH, Silverstein KA, Dehm SM . Androgen receptor splice variants mediate enzalutamide resistance in castration-resistant prostate cancer cell lines. Cancer Res 2013; 73: 483–489.

    Article  CAS  PubMed  Google Scholar 

  47. Li Y, Hwang TH, Oseth LA, Hauge A, Vessella RL, Schmechel SC et al. AR intragenic deletions linked to androgen receptor splice variant expression and activity in models of prostate cancer progression. Oncogene 2012; 31: 4759–4767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cai C, He HH, Chen S, Coleman I, Wang H, Fang Z et al. Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1. Cancer Cell 2011; 20: 457–471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jin R, Yamashita H, Yu X, Wang J, Franco OE, Wang Y et al. Inhibition of NF-kappa B signaling restores responsiveness of castrate-resistant prostate cancer cells to anti-androgen treatment by decreasing androgen receptor-variant expression. Oncogene 2015; 34: 3700–3710.

    Article  CAS  PubMed  Google Scholar 

  50. Nadiminty N, Tummala R, Liu C, Lou W, Evans CP, Gao AC . NF-kappaB2/p52:c-Myc:hnRNPA1 pathway regulates expression of androgen receptor splice variants and enzalutamide sensitivity in prostate cancer. Mol Cancer Ther 2015; 14: 1884–1895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nadiminty N, Tummala R, Liu C, Yang J, Lou W, Evans CP et al. NF-kappaB2/p52 induces resistance to enzalutamide in prostate cancer: role of androgen receptor and its variants. Mol Cancer Ther 2013; 12: 1629–1637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang Y, Jia D, Kim H, Abd Elmageed ZY, Datta A, Davis R et al. Dysregulation of miR-212 promotes castration resistance through hnRNPH1-mediated regulation of AR and AR-V7: implications for racial disparity of prostate cancer. Clin Cancer Res 2015; 22: 1744–1756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu LL, Xie N, Sun S, Plymate S, Mostaghel E, Dong X . Mechanisms of the androgen receptor splicing in prostate cancer cells. Oncogene 2014; 33: 3140–3150.

    Article  CAS  PubMed  Google Scholar 

  54. Ceraline J, Cruchant MD, Erdmann E, Erbs P, Kurtz JE, Duclos B et al. Constitutive activation of the androgen receptor by a point mutation in the hinge region: a new mechanism for androgen-independent growth in prostate cancer. Int J Cancer 2004; 108: 152–157.

    Article  CAS  PubMed  Google Scholar 

  55. Lykke-Andersen S, Jensen TH . Nonsense-mediated mRNA decay: an intricate machinery that shapes transcriptomes. Nat Rev Mol Cell Biol 2015; 16: 665–677.

    Article  CAS  PubMed  Google Scholar 

  56. Krause WC, Shafi AA, Nakka M, Weigel NL . Androgen receptor and its splice variant, AR-V7, differentially regulate FOXA1 sensitive genes in LNCaP prostate cancer cells. Int J Biochem Cell Biol 2014; 54: 49–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Luo J, Pienta KJ . Words of wisdom: re: androgen receptor splice variants mediate enzalutamide resistance in castration-resistant prostate cancer cell lines. Eur Urol 2013; 64: 339–340.

    Article  CAS  PubMed  Google Scholar 

  58. Schweizer MT, Antonarakis ES, Wang H, Ajiboye AS, Spitz A, Cao H et al. Effect of bipolar androgen therapy for asymptomatic men with castration-resistant prostate cancer: results from a pilot clinical study. Sci Transl Med 2015; 7: 269ra2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shafi AA, Putluri V, Arnold JM, Tsouko E, Maity S, Roberts JM et al. Differential regulation of metabolic pathways by androgen receptor (AR) and its constitutively active splice variant, AR-V7, in prostate cancer cells. Oncotarget 2015; 6: 31997–32012.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Yamamoto Y, Loriot Y, Beraldi E, Zhang F, Wyatt AW, Nakouzi NA et al. Generation 2.5 antisense oligonucleotides targeting the androgen receptor and its splice variants suppress enzalutamide-resistant prostate cancer cell growth. Clin Cancer Res 2015; 21: 1675–1687.

    Article  CAS  PubMed  Google Scholar 

  61. Bitting RL, Schaeffer D, Somarelli JA, Garcia-Blanco MA, Armstrong AJ . The role of epithelial plasticity in prostate cancer dissemination and treatment resistance. Cancer Metastasis Rev 2014; 33: 441–468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Das R, Gregory PA, Hollier BG, Tilley WD, Selth LA . Epithelial plasticity in prostate cancer: principles and clinical perspectives. Trends Mol Med 2014; 20: 643–651.

    Article  CAS  PubMed  Google Scholar 

  63. Liu G, Sprenger C, Sun S, Epilepsia KS, Haugk K, Zhang X et al. AR variant ARv567es induces carcinogenesis in a novel transgenic mouse model of prostate cancer. Neoplasia 2013; 15: 1009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sun F, Chen HG, Li W, Yang X, Wang X, Jiang R et al. Androgen receptor splice variant AR3 promotes prostate cancer via modulating expression of autocrine/paracrine factors. J Biol Chem 2014; 289: 1529–1539.

    Article  CAS  PubMed  Google Scholar 

  65. Qin J, Liu X, Laffin B, Chen X, Choy G, Jeter CR et al. The PSA(-/lo) prostate cancer cell population harbors self-renewing long-term tumor-propagating cells that resist castration. Cell Stem Cell 2012; 10: 556–569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sun Y, Wang BE, Leong KG, Yue P, Li L, Jhunjhunwala S et al. Androgen deprivation causes epithelial-mesenchymal transition in the prostate: implications for androgen-deprivation therapy. Cancer Res 2012; 72: 527–536.

    Article  CAS  PubMed  Google Scholar 

  67. Domingo-Domenech J, Vidal SJ, Rodriguez-Bravo V, Castillo-Martin M, Quinn SA, Rodriguez-Barrueco R et al. Suppression of acquired docetaxel resistance in prostate cancer through depletion of notch- and hedgehog-dependent tumor-initiating cells. Cancer Cell 2012; 22: 373–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Armstrong AJ, Marengo MS, Oltean S, Kemeny G, Bitting RL, Turnbull JD et al. Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Mol Cancer Res 2011; 9: 997–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cottard F, Asmane I, Erdmann E, Bergerat JP, Kurtz JE, Ceraline J . Constitutively active androgen receptor variants upregulate expression of mesenchymal markers in prostate cancer cells. PLoS One 2013; 8: e63466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kong D, Sethi S, Li Y, Chen W, Sakr WA, Heath E et al. Androgen receptor splice variants contribute to prostate cancer aggressiveness through induction of EMT and expression of stem cell marker genes. Prostate 2015; 75: 161–174.

    Article  CAS  PubMed  Google Scholar 

  71. Zhu ML, Kyprianou N . Role of androgens and the androgen receptor in epithelial-mesenchymal transition and invasion of prostate cancer cells. FASEB J 2010; 24: 769–777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ware KE, Schaeffer D, Zhang T, Garcia-Blanco MA, Armstrong AJ . AR-V7 regulation during epithelial plasticity. Cancer Res 2015; 75: 1847.

    Article  Google Scholar 

  73. Akamatsu S, Wyatt AW, Lin D, Lysakowski S, Zhang F, Kim S et al. The placental gene PEG10 promotes progression of neuroendocrine prostate cancer. Cell Rep 2015; 12: 922–936.

    Article  CAS  PubMed  Google Scholar 

  74. Heebøll S, Borre M, Ottosen PD, Dyrskjøt L, Ørntoft TF, Tørring N . Snail1 is over‐expressed in prostate cancer. APMIS 2009; 117: 196–204.

    Article  CAS  PubMed  Google Scholar 

  75. Mak P, Leav I, Pursell B, Bae D, Yang X, Taglienti CA et al. ERbeta impedes prostate cancer EMT by destabilizing HIF-1alpha and inhibiting VEGF-mediated snail nuclear localization: implications for Gleason grading. Cancer Cell 2010; 17: 319–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. McKeithen D, Graham T, Chung LW, Odero-Marah V . Snail transcription factor regulates neuroendocrine differentiation in LNCaP prostate cancer cells. Prostate 2010; 70: 982–992.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Qu Y, Dai B, Ye D, Kong Y, Chang K, Jia Z et al. Constitutively active AR-V7 plays an essential role in the development and progression of castration-resistant prostate cancer. Sci Rep 2015; 5: 7654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang X, Morrissey C, Sun S, Ketchandji M, Nelson PS, True LD et al. Androgen receptor variants occur frequently in castration resistant prostate cancer metastases. PLoS One 2011; 6: e27970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Efstathiou E, Titus M, Wen S, Hoang A, Karlou M, Ashe R et al. Molecular characterization of enzalutamide-treated bone metastatic castration-resistant prostate cancer. Eur Urol 2015; 67: 53–60.

    Article  CAS  PubMed  Google Scholar 

  80. Efstathiou E, Titus MA, Wen S, SanMiguel A, Hoang A, De Haas-Amatsaleh A et alEnzalutamide (ENZA) in combination with abiraterone acetate (AA) in bone metastatic castration resistant prostate cancer (mCRPC). ASCO Annual Meeting Proceedings; abstr 5000, 2014.

  81. Steinestel J, Luedeke M, Arndt A, Schnoeller TJ, Lennerz JK, Wurm C et al. Detecting predictive androgen receptor modifications in circulating prostate cancer cells. Oncotarget 2015; (e-pub ahead pf print; doi:10.18632/oncotarget.3925).

  82. Thadani-Mulero M, Portella L, Sun S, Sung M, Matov A, Vessella RL et al. Androgen receptor splice variants determine taxane sensitivity in prostate cancer. Cancer Res 2014; 74: 2270–2282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhang G, Liu X, Li J, Ledet E, Alvarez X, Qi Y et al. Androgen receptor splice variants circumvent AR blockade by microtubule-targeting agents. Oncotarget 2015; 6: 23358–23371.

    PubMed  PubMed Central  Google Scholar 

  84. Antonarakis ES, Lu C, Luber B, Wang H, Chen Y, Nakazawa M et al. Androgen receptor splice variant 7 and efficacy of taxane chemotherapy in patients with metastatic castration-resistant prostate cancer. JAMA Oncol 2015; 1: 582–591.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Nakazawa M, Lu C, Chen Y, Paller CJ, Carducci MA, Eisenberger MA et al. Serial blood-based analysis of AR-V7 in men with advanced prostate cancer. Ann Oncol 2015; 26: 1859–1865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Onstenk W, Sieuwerts AM, Kraan J, Van M, Nieuweboer AJ, Mathijssen RH et al. Efficacy of cabazitaxel in castration-resistant prostate cancer is independent of the presence of AR-V7 in circulating tumor cells. Eur Urol 2015; 68: 939–945.

    Article  CAS  PubMed  Google Scholar 

  87. Purushottamachar P, Godbole AM, Gediya LK, Martin MS, Vasaitis TS, Kwegyir-Afful AK et al. Systematic structure modifications of multitarget prostate cancer drug candidate galeterone to produce novel androgen receptor down-regulating agents as an approach to treatment of advanced prostate cancer. J Med Chem 2013; 56: 4880–4898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kwegyir-Afful AK, Ramalingam S, Purushottamachar P, Ramamurthy VP, Njar VC . Galeterone and VNPT55 induce proteasomal degradation of AR/AR-V7, induce significant apoptosis via cytochrome c release and suppress growth of castration resistant prostate cancer xenografts in vivo. Oncotarget 2015; 6: 27440–27460.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Andersen RJ, Mawji NR, Wang J, Wang G, Haile S, Myung JK et al. Regression of castrate-recurrent prostate cancer by a small-molecule inhibitor of the amino-terminus domain of the androgen receptor. Cancer cell 2010; 17: 535–546.

    Article  CAS  PubMed  Google Scholar 

  90. Kato M, Banuelos CA, Imamura Y, Leung JK, Caley DP, Wang J et al. Co-targeting androgen receptor splice variants and mTOR signaling pathway for the treatment of castration-resistant prostate cancer. Clin Cancer Res 2015. (e-pub ahead of print; doi:10.1158/1078-0432.CCR-15-2119).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Myung JK, Banuelos CA, Fernandez JG, Mawji NR, Wang J, Tien AH et al. An androgen receptor N-terminal domain antagonist for treating prostate cancer. J Clin Invest 2013; 123: 2948–2960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Brand LJ, Olson ME, Ravindranathan P, Guo H, Kempema AM, Andrews TE et al. EPI-001 is a selective peroxisome proliferator-activated receptor-gamma modulator with inhibitory effects on androgen receptor expression and activity in prostate cancer. Oncotarget 2015; 6: 3811–3824.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Montgomery R, Antonarakis E, Hussain M, Fizazi K, Joshua A, Attard G et al. A phase 1/2 open-label study of safety and antitumor activity of EPI-506, a novel AR N-terminal domain inhibitor, in men with metastatic castration-resistant prostate cancer (mCRPC) with progression after enzalutamide or abiraterone. J Clin Oncol 2015; 33: abstr TPS5072.

    Article  Google Scholar 

  94. Liu C, Lou W, Armstrong C, Zhu Y, Evans CP, Gao AC . Niclosamide suppresses cell migration and invasion in enzalutamide resistant prostate cancer cells via Stat3-AR axis inhibition. Prostate 2015; 75: 1341–1353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Liu C, Lou W, Zhu Y, Nadiminty N, Schwartz CT, Evans CP et al. Niclosamide inhibits androgen receptor variants expression and overcomes enzalutamide resistance in castration-resistant prostate cancer. Clin Cancer Res 2014; 20: 3198–3210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Romanel A, Tandefelt DG, Conteduca V, Jayaram A, Casiraghi N, Wetterskog D et al. Plasma AR and abiraterone-resistant prostate cancer. Sci Transl Med 2015; 7: 312re10.

  97. Gundem G, Van Loo P, Kremeyer B, Alexandrov LB, Tubio JM, Papaemmanuil E et al. The evolutionary history of lethal metastatic prostate cancer. Nature 2015; 520: 353–357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bitting RL, Healy P, Halabi S, George DJ, Goodin M, Armstrong AJ . Clinical phenotypes associated with circulating tumor cell enumeration in metastatic castration-resistant prostate cancer. Urol Oncol 2015; 33: 110.e1–110.e9.

    Article  Google Scholar 

  99. Beltran H, Prandi D, Mosquera JM, Benelli M, Puca L, Cyrta J et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med 2016; 22: 298–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mateo J, Carreira S, Sandhu S, Miranda S, Mossop H, Perez-Lopez R et al. DNA-repair defects and olaparib in metastatic prostate cancer. N Engl J Med 2015; 373: 1697–1708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

ESA has received funding from the Prostate Cancer Foundation, the Patrick C. Walsh Fund, and NIH grants R01 CA185297 and P30 CA006973. AJA has received funding from a Prostate Cancer Foundation and Movember Global Treatment Sciences Challenge Award. SMD is currently funded by a Movember/Prostate Cancer Foundation Challenge Award, American Cancer Society Research Scholar Grant RSG-12-031-01-TBE, NIH grant R01 CA174777, US Department of Defense Prostate Cancer Research Program grants W81XWH-12-2-0093, W81XWH-13-1-0518, W81XWH-15-1-0633, and W81XWH-15-1-0501, and a grant from the Minnesota Partnership for Biotechnology and Medical Genomics. JL is currently funded by a Prostate Cancer Foundation grant, NIH grant R01 CA185297, and US Department of Defense Prostate Cancer Research Program grants W81XWH-13-2-0093 and W81XWH-15-2-0050.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E S Antonarakis.

Ethics declarations

Competing interests

ESA has served as a paid consultant/advisor for Janssen, Astellas, Sanofi, Dendreon, Essa, and Medivation; has received research funding to his institution from Janssen, Johnson & Johnson, Sanofi, Dendreon, Exelixis, Genentech, Novartis and Tokai; and is a co-inventor of a technology that has been licensed to Tokai. AJA has served as a paid consultant for Sanofi-aventis, Dendreon, Janssen, Eisai, Bayer and Medivation/Astellas; is on the speaker’s bureau for Sanofi-aventis and Dendreon; and receives research funding to his institution from Janssen, Medivation/Astellas, Sanofi-aventis, Active Biotech, Bayer, Dendreon, Novartis and Pfizer. SMD has served as a paid consultant/advisor for Medivation/Astellas. JL has served as a paid consultant/advisor for Astellas, Gilead and Sanofi; has received research funding to his institution from Orion, Mirati, Astellas, Sanofi and Gilead; and is a co-inventor of a technology that has been licensed to A&G and Tokai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonarakis, E., Armstrong, A., Dehm, S. et al. Androgen receptor variant-driven prostate cancer: clinical implications and therapeutic targeting. Prostate Cancer Prostatic Dis 19, 231–241 (2016). https://doi.org/10.1038/pcan.2016.17

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/pcan.2016.17

This article is cited by

Search

Quick links