Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Basic Research

Elevated osteonectin/SPARC expression in primary prostate cancer predicts metastatic progression

A Corrigendum to this article was published on 20 December 2011

Abstract

Background:

The majority of prostate cancers (CaP) are detected in early stages with uncertain prognosis. Therefore, an intensive effort is underway to define early predictive markers of CaP with aggressive progression characteristics.

Methods:

In order to define such prognostic markers, we performed comparative analyses of transcriptomes of well- and poorly differentiated (PD) tumor cells from primary tumors of patients (N=40) with 78 months of mean follow-up after radical prostatectomy. Validation experiments were carried out at transcript level by quantitative real-time reverse transcriptase-PCR (RT-PCR) (N=110) and at protein level by immunohistochemistry (N=53) in primary tumors from an independent patient cohort.

Results:

Association of a biochemical network of 12 genes with SPARC gene as a central node was highlighted with PD phenotype. Of note, there was remarkable enrichment of NKXH_NKXH_HOX composite regulatory elements in the promoter of the genes in this network suggesting a biological significance of this gene-expression regulatory mechanism in CaP progression. Further, quantitative expression analyses of SPARC mRNA in primary prostate tumor cells of 110 patients validated the association of SPARC expression with poor differentiation and higher Gleason score. Most significantly, higher SPARC protein expression at the time of prostatectomy was associated with the subsequent development of metastasis (P=0.0006, AUC=0.803).

Conclusions:

In summary, we propose that evaluation of SPARC in primary CaP has potential as a prognostic marker of metastatic progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Siegel R, Ward E, Brawley O, Jemal A . Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin 2011; 61: 212–236.

    Article  Google Scholar 

  2. Denmeade SR, Isaacs JT . A history of prostate cancer treatment. Nat Rev Cancer 2002; 2: 389–396.

    Article  CAS  Google Scholar 

  3. Nelson WG, De Marzo AM, Yegnasubramanian S . Epigenetic alterations in human prostate cancers. Endocrinology 2009; 150: 3991–4002.

    Article  CAS  Google Scholar 

  4. Hessels D, Schalken JA . The use of PCA3 in the diagnosis of prostate cancer. Nat Rev Urol 2009; 6: 255–261.

    Article  CAS  Google Scholar 

  5. Rubin MA, Zhou M, Dhanasekaran SM, Varambally S, Barrette TR, Sanda MG et al. alpha-Methylacyl coenzyme A racemase as a tissue biomarker for prostate cancer. JAMA 2002; 287: 1662–1670.

    Article  CAS  Google Scholar 

  6. Petrovics G, Liu A, Shaheduzzaman S, Furusato B, Sun C, Chen Y et al. Frequent overexpression of ETS-related gene-1 (ERG1) in prostate cancer transcriptome. Oncogene 2005; 24: 3847–3852.

    Article  CAS  Google Scholar 

  7. Witte JS . Prostate cancer genomics: towards a new understanding. Nat Rev Genet 2009; 10: 77–82.

    Article  CAS  Google Scholar 

  8. Reynolds MA . Molecular alterations in prostate cancer. Cancer Lett 2008; 271: 13–24.

    Article  CAS  Google Scholar 

  9. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005; 310: 644–648.

    Article  CAS  Google Scholar 

  10. Palanisamy N, Ateeq B, Kalyana-Sundaram S, Pflueger D, Ramnarayanan K, Shankar S et al. Rearrangements of the RAF kinase pathway in prostate cancer, gastric cancer and melanoma. Nat Med 2010; 16: 793–798.

    Article  CAS  Google Scholar 

  11. Negrini S, Gorgoulis VG, Halazonetis TD . Genomic instability - an evolving hallmark of cancer. Nat Rev Mol Cell Biol 2010; 11: 220–228.

    Article  CAS  Google Scholar 

  12. Hainaut P, Wiman KG . 30 years and a long way into p53 research. Lancet Oncol 2009; 10: 913–919.

    Article  Google Scholar 

  13. Srikantan V, Srivastava S . Molecular dissection of the prostate cancer genome. In: Hofmann R, Heidenreich A, Moul JW (eds). Prostate Cancer. Springer-Verlag: Berlin, 2003, pp 25–40.

    Chapter  Google Scholar 

  14. Dehm SM, Tindall DJ . Androgen receptor structural and functional elements: role and regulation in prostate cancer. Mol Endocrinol 2007; 21: 2855–2863.

    Article  CAS  Google Scholar 

  15. Dobi A, Furusato B, Shaheduzzaman S, Chen Y, Vahey M, Nydam T et al. ERG expression levels in prostate tumors reflect functional status of the androgen receptor (AR) as a consequence of fusion of ERG with AR regulated gene promoters. The Open Cancer J 2010; 3: 101–108.

    Article  CAS  Google Scholar 

  16. Sarker D, Reid AH, Yap TA, de Bono JS . Targeting the PI3K/AKT pathway for the treatment of prostate cancer. Clin Cancer Res 2009; 15: 4799–4805.

    Article  CAS  Google Scholar 

  17. Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 2002; 419: 624–629.

    Article  CAS  Google Scholar 

  18. Tomlins SA, Rhodes DR, Yu J, Varambally S, Mehra R, Perner S et al. The role of SPINK1 in ETS rearrangement-negative prostate cancers. Cancer Cell 2008; 13: 519–528.

    Article  CAS  Google Scholar 

  19. Clark JP, Cooper CS . ETS gene fusions in prostate cancer. Nat Rev Urol 2009; 6: 429–439.

    Article  CAS  Google Scholar 

  20. Thomas R, True LD, Bassuk JA, Lange PH, Vessella RL . Differential expression of osteonectin/SPARC during human prostate cancer progression. Clin Cancer Res 2000; 6: 1140–1149.

    CAS  PubMed  Google Scholar 

  21. Arnold SA, Brekken RA . SPARC: a matricellular regulator of tumorigenesis. J Cell Commun Signal 2009; 3: 255–273.

    Article  Google Scholar 

  22. De S, Chen J, Narizhneva NV, Heston W, Brainard J, Sage EH et al. Molecular pathway for cancer metastasis to bone. J Biol Chem 2003; 278: 39044–39050.

    Article  CAS  Google Scholar 

  23. Podhajcer OL, Benedetti LG, Girotti MR, Prada F, Salvatierra E, Llera AS . The role of the matricellular protein SPARC in the dynamic interaction between the tumor and the host. Cancer Metastasis Rev 2008; 27: 691–705.

    Article  CAS  Google Scholar 

  24. Framson PE, Sage EH . SPARC and tumor growth: where the seed meets the soil? J Cell Biochem 2004; 92: 679–690.

    Article  CAS  Google Scholar 

  25. Motamed K . SPARC (osteonectin/BM-40). Int J Biochem Cell Biol 1999; 31: 1363–1366.

    Article  CAS  Google Scholar 

  26. Petrovics G, Zhang W, Makarem M, Street JP, Connelly R, Sun L et al. Elevated expression of PCGEM1, a prostate-specific gene with cell growth-promoting function, is associated with high-risk prostate cancer patients. Oncogene 2004; 23: 605–611.

    Article  CAS  Google Scholar 

  27. Werner T . Regulatory networks: linking microarray data to systems biology. Mech Ageing Dev 2007; 128: 168–172.

    Article  CAS  Google Scholar 

  28. Werner T . Bioinformatics applications for pathway analysis of microarray data. Curr Opin Biotechnol 2008; 19: 50–54.

    Article  CAS  Google Scholar 

  29. Seifert M, Scherf M, Epple A, Werner T . Multievidence microarray mining. Trends Genet 2005; 21: 553–558.

    Article  CAS  Google Scholar 

  30. Cohen CD, Lindenmeyer MT, Eichinger F, Hahn A, Seifert M, Moll AG et al. Improved elucidation of biological processes linked to diabetic nephropathy by single probe-based microarray data analysis. PLoS One 2008; 3: e2937.

    Article  Google Scholar 

  31. Sharad S, Srivastava A, Ravulapalli S, Parker P, Chen Y, Li H et al. Prostate cancer gene expression signature of patients with high body mass index. Prostate Cancer Prostatic Dis 2011; 14: 22–29.

    Article  CAS  Google Scholar 

  32. Cornford PA, Dodson AR, Parsons KF, Desmond AD, Woolfenden A, Fordham M et al. Heat shock protein expression independently predicts clinical outcome in prostate cancer. Cancer Res 2000; 60: 7099–7105.

    CAS  PubMed  Google Scholar 

  33. Lapointe J, Li C, Higgins JP, van de Rijn M, Bair E, Montgomery K et al. Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci USA 2004; 101: 811–816.

    Article  CAS  Google Scholar 

  34. Santagata S, Demichelis F, Riva A, Varambally S, Hofer MD, Kutok JL et al. JAGGED1 expression is associated with prostate cancer metastasis and recurrence. Cancer Res 2004; 64: 6854–6857.

    Article  CAS  Google Scholar 

  35. Szász AM, Nyirády P, Majoros A, Szendrõi A, Szûcs M, Székely E et al. beta-catenin expression and claudin expression pattern as prognostic factors of prostatic cancer progression. BJU Int 2010; 105: 716–722.

    Article  Google Scholar 

  36. Li R, Dai H, Wheeler TM, Sayeeduddin M, Scardino PT, Frolov A et al. Prognostic value of Akt-1 in human prostate cancer: a computerized quantitative assessment with quantum dot technology. Clin Cancer Res 2009; 15: 3568–3573.

    Article  CAS  Google Scholar 

  37. Gurel B, Iwata T, Koh CM, Yegnasubramanian S, Nelson WG, De Marzo AM . Molecular alterations in prostate cancer as diagnostic, prognostic, and therapeutic targets. Adv Anat Pathol 2008; 15: 319–331.

    Article  CAS  Google Scholar 

  38. Quinn DI, Henshall SM, Sutherland RL . Molecular markers of prostate cancer outcome. Eur J Cancer 2005; 41: 858–887.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grant RO1-DK065977 to SS and GP from the National Institutes of Health, and by the Center for Prostate Disease Research, a program of the Henry M. Jackson Foundation for the Advancement of Military Medicine (Rockville, MD), funded by the US Army Medical Research and Materiel Command.

Disclaimer

The views expressed in this manuscript are those of the authors and do not reflect the official policy of the Department of the Army, Department of Defense or the US Government.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S Srivastava or G Petrovics.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Prostate Cancer and Prostatic Diseases website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeRosa, C., Furusato, B., Shaheduzzaman, S. et al. Elevated osteonectin/SPARC expression in primary prostate cancer predicts metastatic progression. Prostate Cancer Prostatic Dis 15, 150–156 (2012). https://doi.org/10.1038/pcan.2011.61

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/pcan.2011.61

Keywords

This article is cited by

Search

Quick links