Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Basic Research

Inverse association of p16INK4a and p14ARF methylation of the CDKN2a locus in different Gleason scores of prostate cancer

Abstract

Background:

Promoter hypermethylation is an important epigenetic mechanism in the regulation of several key modulators of prostate carcinoma progression. Recent studies suggest that the polycomb-group (PcG) protein BMI1 may have an impact on epigenetic regulation of several targets, including the CDKN2a locus.

Methods:

In this study, we investigated the association of BMI1 expression, promoter methylation of CDKN2a (p16INK4a and p14ARF) and TMS1 with pathological variables (Gleason score, TNM stage, perineural invasion) in prostate cancer (PCa).

Results:

Methylation of p16INK4a and p14ARF revealed an inverse association with Gleason score 7b and Gleason score 6. No significant association could be demonstrated for BMI1 -overexpression and promoter methylation of p16INK4a, p14ARF and TMS1 as well as pT category.

Conclusions:

Our data suggest that the CDKN2a locus is a switch in PCa with methylation of p16INK4a being a marker for more aggressive tumours of Gleason score 7b, but no association with BMI overexpression was observed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Coleman MP, Gatta G, Verdecchia A, Estève J, Sant M, Storm H et al. EUROCARE-3 summary: cancer survival in Europe at the end of the 20th century. Ann Oncol 2003; 14 (Suppl 5): v128–v149.

    Article  PubMed  Google Scholar 

  2. Humphrey PA . Gleason grading and prognostic factors in carcinoma of the prostate. Mod Pathol 2004; 17: 292–306.

    Article  PubMed  Google Scholar 

  3. Epstein JI . An update of the Gleason grading system. J Urol 2010; 183: 433–440.

    Article  PubMed  Google Scholar 

  4. Wright JL, Salinas CA, Lin DW, Kolb S, Koopmeiners J, Feng Z et al. Prostate cancer specific mortality and Gleason 7 disease differences in prostate cancer outcomes between cases with Gleason 4+3 and Gleason 3+4 tumors in a population based cohort. J Urol 2009; 182: 2702–2707.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bradford TJ, Tomlins SA, Wang X, Chinnaiyan AM . Molecular markers of prostate cancer. Urol Oncol 2006; 24: 538–551.

    Article  CAS  PubMed  Google Scholar 

  6. Duhagon MA, Hurte EM, Sotelo-Silveira JR, Zhang X, Farrar WL . Genomic profiling of tumor initiating prostatospheres. BMC Genomics 2010; 11: 324.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Goo YA, Goodlett DR . Advances in proteomic prostate cancer biomarker discovery. J Proteomics 2010; 73: 1839–1850.

    Article  CAS  PubMed  Google Scholar 

  8. Kron KJ, Liu L, Pethe VV, Demetrashvili N, Nesbitt ME, Trachtenberg J et al. DNA methylation of HOXD3 as a marker of prostate cancer progression. Lab Invest 2010; 90: 1060–1067.

    Article  CAS  PubMed  Google Scholar 

  9. Sathyanarayana UG, Padar A, Suzuki M, Maruyama R, Shigematsu H, Hsieh JT et al. Aberrant promoter methylation of laminin-5-encoding genes in prostate cancers and its relationship to clinicopathological features. Clin Cancer Res 2003; 9: 6395–6400.

    CAS  PubMed  Google Scholar 

  10. Li LC, Carroll PR, Dahiya R . Epigenetic changes in prostate cancer: implication for diagnosis and treatment. J Natl Cancer Inst 2005; 97: 103–115.

    Article  CAS  PubMed  Google Scholar 

  11. Murphy TM, Perry AS, Lawler M . The emergence of DNA methylation as a key modulator of aberrant cell death in prostate cancer. Endocr Relat Cancer 2008; 15: 11–25.

    Article  CAS  PubMed  Google Scholar 

  12. Hoque MO . DNA methylation changes in prostate cancer: current developments and future clinical implementation. Expert Rev Mol Diagn 2009; 9: 243–257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ramirez ML, Nelson EC, Evans CP . Beyond prostate-specific antigen: alternate serum markers. Prostate Cancer Prostatic Dis 2008; 11: 216–229.

    Article  CAS  PubMed  Google Scholar 

  14. Jeronimo C, Henrique R, Hoque MO, Mambo E, Ribeiro FR, Varzim G et al. A quantitative promoter methylation profile of prostate cancer. Clin Cancer Res 2004; 10: 8472–8478.

    Article  CAS  PubMed  Google Scholar 

  15. Henrique R, Costa VL, Jeronimo C . Methylation-based biomarkers for early detection of urological cancer. Crit Rev Oncog 2007; 13: 265–282.

    Article  PubMed  Google Scholar 

  16. Hoffmann MJ, Engers R, Florl AR, Otte AP, Muller M, Schulz WA . Expression changes in EZH2, but not in BMI-1, SIRT1, DNMT1 or DNMT3B are associated with DNA methylation changes in prostate cancer. Cancer Biol Ther 2007; 6: 1403–1412.

    CAS  PubMed  Google Scholar 

  17. van Leenders GJ, Dukers D, Hessels D, van den Kieboom SW, Hulsbergen CA, Witjes JA et al. Polycomb-group oncogenes EZH2, BMI1, and RING1 are overexpressed in prostate cancer with adverse pathologic and clinical features. Eur Urol 2007; 52: 455–463.

    Article  CAS  PubMed  Google Scholar 

  18. Fan C, He L, Kapoor A, Rybak AP, De Melo J, Cutz JC et al. PTEN inhibits BMI1 function independently of its phosphatase activity. Mol Cancer 2009; 8: 98.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Berezovska OP, Glinskii AB, Yang Z, Li XM, Hoffman RM, Glinsky GV et al. Essential role for activation of the Polycomb group (PcG) protein chromatin silencing pathway in metastatic prostate cancer. Cell Cycle 2006; 5: 1886–1901.

    Article  CAS  PubMed  Google Scholar 

  20. Breuer RH, Snijders PJ, Sutedja GT, Sewalt RG, Otte AP, Postmus PE et al. Expression of the p16(INK4a) gene product, methylation of the p16(INK4a) promoter region and expression of the polycomb-group gene BMI-1 in squamous cell lung carcinoma and premalignant endobronchial lesions. Lung Cancer 2005; 48: 299–306.

    Article  CAS  PubMed  Google Scholar 

  21. Dhawan S, Tschen SI, Bhushan A . Bmi-1 regulates the Ink4a/Arf locus to control pancreatic beta-cell proliferation. Genes Dev 2009; 23: 906–911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bracken AP, Dietrich N, Pasini D, Hansen KH, Helin K Genome-wide mapping of Polycomb target genes unravels their roles in cell fate transitions. Genes Dev 2006; 20: 1123–1136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kim JH, Yoon SY, Kim CN, Joo JH, Moon SK, Choe IS et al. The Bmi-1 oncoprotein is overexpressed in human colorectal cancer and correlates with the reduced p16INK4a/p14ARF proteins. Cancer Lett 2004; 203: 217–224.

    Article  CAS  PubMed  Google Scholar 

  24. Sasaki M, Ikeda H, Sato Y, Nakanuma Y . Decreased expression of Bmi1 is closely associated with cellular senescence in small bile ducts in primary biliary cirrhosis. Am J Pathol 2006; 169: 831–845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Gil J, Bernard D, Martinez D, Beach D . Polycomb CBX7 has a unifying role in cellular lifespan. Nat Cell Biol 2004; 6: 67–72.

    Article  CAS  PubMed  Google Scholar 

  26. Benbrahim-Tallaa L, Waterland RA, Dill AL, Webber MM, Waalkes MP . Tumor suppressor gene inactivation during cadmium-induced malignant transformation of human prostate cells correlates with overexpression of de novo DNA methyltransferase. Environ Health Perspect 2007; 115: 1454–1459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bruggeman SW, Valk-Lingbeek ME, van der Stoop PP, Jacobs JJ, Kieboom K, Tanger E et al. Ink4a and Arf differentially affect cell proliferation and neural stem cell self-renewal in Bmi1-deficient mice. Genes Dev 2005; 19: 1438–1443.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Esteller M, Tortola S, Toyota M, Capella G, Peinado MA, Baylin SB et al. Hypermethylation-associated inactivation of p14(ARF) is independent of p16(INK4a) methylation and p53 mutational status. Cancer Res 2000; 60: 129–133.

    CAS  PubMed  Google Scholar 

  29. Conway KE, McConnell BB, Bowring CE, Donald CD, Warren ST, Vertino PM et al. TMS1, a novel proapoptotic caspase recruitment domain protein, is a target of methylation-induced gene silencing in human breast cancers. Cancer Res 2000; 60: 6236–6242.

    CAS  PubMed  Google Scholar 

  30. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB . Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 1996; 93: 9821–9826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Klaes R, Friedrich T, Spitkovsky D, Ridder R, Rudy W, Petry U et al. Overexpression of p16(INK4A) as a specific marker for dysplastic and neoplastic epithelial cells of the cervix uteri. Int J Cancer 2001; 92: 276–284.

    Article  CAS  PubMed  Google Scholar 

  32. Kron K, Pethe V, Briollais L, Sadikovic B, Ozcelik H, Sunderji A et al. Discovery of novel hypermethylated genes in prostate cancer using genomic CpG island microarrays. PLoS One 2009; 4: e4830.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Widschwendter M, Fiegl H, Egle D, Mueller-Holzner E, Spizzo G, Marth C et al. Epigenetic stem cell signature in cancer. Nat Genet 2007; 39: 157–158.

    Article  CAS  PubMed  Google Scholar 

  34. Seligson DB, Horvath S, Shi T, Yu H, Tze S, Grunstein M et al. Global histone modification patterns predict risk of prostate cancer recurrence. Nature 2005; 435: 1262–1266.

    Article  CAS  PubMed  Google Scholar 

  35. Yu J, Rhodes DR, Tomlins SA, Cao X, Chen G, Mehra R et al. A polycomb repression signature in metastatic prostate cancer predicts cancer outcome. Cancer Res 2007; 67: 10657–10663.

    Article  CAS  PubMed  Google Scholar 

  36. Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 2002; 419: 624–629.

    Article  CAS  PubMed  Google Scholar 

  37. Glinsky GV . ‘Stemness’ genomics law governs clinical behavior of human cancer: implications for decision making in disease management. J Clin Oncol 2008; 26: 2846–2853.

    Article  PubMed  Google Scholar 

  38. Glinsky GV . Stem cell origin of death-from-cancer phenotypes of human prostate and breast cancers. Stem Cell Rev 2007; 3: 79–93.

    Article  CAS  PubMed  Google Scholar 

  39. Freedberg DE, Rigas SH, Russak J, Gai W, Kaplow M, Osman I et al. Frequent p16-independent inactivation of p14ARF in human melanoma. J Natl Cancer Inst 2008; 100: 784–795.

    Article  CAS  PubMed  Google Scholar 

  40. Brown VL, Harwood CA, Crook T, Cronin JG, Kelsell DP, Proby CM . p16INK4a and p14ARF tumor suppressor genes are commonly inactivated in cutaneous squamous cell carcinoma. J Invest Dermatol 2004; 122: 1284–1292.

    Article  CAS  PubMed  Google Scholar 

  41. Weber A, Bellmann U, Bootz F, Wittekind C, Tannapfel A . INK4a-ARF alterations and p53 mutations in primary and constitutive squamous cell carcinoma of the head and neck. Virchovs Arch 2002; 441: 133–142.

    Article  CAS  Google Scholar 

  42. Esteller M, Corn PG, Baylin SB, Herman JG . A gene hypermethylation profile of human Cancer. Cancer Res 2001; 61: 3225–3229.

    CAS  PubMed  Google Scholar 

  43. Kim WY, Sharpless NE . The regulation of INK4/ARF in cancer and aging. Cell 2006; 127: 265–275.

    Article  CAS  PubMed  Google Scholar 

  44. Fan C, He L, Kapoor A, Gillis A, Rybak AP, Cutz JC et al. Bmi1 promotes prostate tumorigenesis via inhibiting p16(INK4A) and p14(ARF) expression. Biochim Biophys Acta 2008; 1782: 642–648.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded in part by the Protein Research Unit Ruhr within Europe, PURE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Neid.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Prostate Cancer and Prostatic Diseases website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verdoodt, B., Sommerer, F., Palisaar, RJ. et al. Inverse association of p16INK4a and p14ARF methylation of the CDKN2a locus in different Gleason scores of prostate cancer. Prostate Cancer Prostatic Dis 14, 295–301 (2011). https://doi.org/10.1038/pcan.2011.45

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/pcan.2011.45

Keywords

This article is cited by

Search

Quick links