Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Basic Research

XRCC1 Arg399Gln and Arg194Trp polymorphisms in prostate cancer risk: a meta-analysis

Abstract

Epidemiological studies have evaluated the association between X-ray repair cross-complementing group 1 gene (XRCC1) Arg399Gln and Arg194Trp polymorphisms and risk of prostate cancer (PCa). However, the results from the published studies on the association between these two XRCC1 polymorphisms and PCa risk are conflicting. To derive a more precise estimation of association between the XRCC1 polymorphisms and risk of PCa, we performed a meta-analysis. A comprehensive search was conducted to identify all case–control studies of XRCC1 polymorphisms and PCa risk. We used odds ratios (ORs) with 95% confidence intervals (CIs) to assess the strength of the association. Overall, we found that both Arg399Gln and Arg194Trp polymorphisms were not significantly associated with PCa risk. However, in stratified analysis by ethnicity, we found that the Arg399Gln polymorphism was significantly associated with PCa risk in Asian population (Gln/Gln vs Arg/Arg: OR=1.46, 95% CI: 1.05–2.03, P=0.03; Gln/Gln vs Arg/Gln+Arg/Arg: OR=1.48, 95% CI: 1.12–1.95, P=0.01). In this meta-analysis, we found that both Arg399Gln and Arg194Trp polymorphisms were not related to overall PCa risk. However, in subgroup analysis we found a suggestion that XRCC1 399Gln allele might be a low-penetrent risk factor for PCa only in Asian men.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C et al. Cancer statistics, 2006. CA Cancer J Clin 2006; 56: 106–130.

    Article  PubMed  Google Scholar 

  2. Schaid DJ . The complex genetic epidemiology of prostate cancer. Hum Mol Genet 2004; 13 (Spec No 1): R103–R121.

    Article  CAS  PubMed  Google Scholar 

  3. Bosland MC . The role of steroid hormones in prostate carcinogenesis. J Natl Cancer Inst Monogr 2000; 27: 39–66.

    Article  CAS  Google Scholar 

  4. Xu B, Xu Z, Cheng G, Min ZC, Mi Y, Zhang ZZ et al. Association between polymorphisms of TP53 and MDM2 and prostate cancer risk in southern Chinese. Cancer Genet Cytogenet 2010; 202: 76–81.

    Article  CAS  PubMed  Google Scholar 

  5. Lichtenstein P, Holm NV, Verkasalo PK, Iliadou A, Kaprio J, Koskenvuo M et al. Environmental and heritable factors in the causation of cancer--analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 2000; 343: 78–85.

    Article  CAS  PubMed  Google Scholar 

  6. Mandal RK, Gangwar R, Mandhani A, Mittal RD . DNA repair gene X-ray repair cross-complementing group 1 and xeroderma pigmentosum group D polymorphisms and risk of prostate cancer: a study from North India. DNA Cell Biol 2010; 29: 183–190.

    Article  CAS  PubMed  Google Scholar 

  7. Hamano T, MaTsui H, Ohtake N, Nakata S, Suzuki K . Polymorphism of DNA repair genes, XRCC1 and XRCC3, and susceptibility to familial prostate cancer in a Iapanese population. Asia Pac J Cli Oncol 2008; 4: 21–26.

    Article  Google Scholar 

  8. Xu Z, Hua LX, Qian LX, Yang J, Wang XR, Zhang W et al. Relationship between XRCC1 polymorphisms and susceptibility to prostate cancer in men from Han, Southern China. Asian J Androl 2007; 9: 331–338.

    Article  CAS  PubMed  Google Scholar 

  9. Caldecott KW, Aoufouchi S, Johnson P, Shall S . XRCC1 polypeptide interacts with DNA polymerase beta and possibly poly (ADP-ribose) polymerase, and DNA ligase III is a novel molecular ‘nick-sensor’ in vitro. Nucleic Acids Res 1996; 24: 4387–4394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tebbs RS, Flannery ML, Meneses JJ, Hartmann A, Tucker JD, Thompson LH et al. Requirement for the Xrcc1 DNA base excision repair gene during early mouse development. Dev Biol 1999; 208: 513–529.

    Article  CAS  PubMed  Google Scholar 

  11. Shen MR, Zdzienicka MZ, Mohrenweiser H, Thompson LH, Thelen MP . Mutations in hamster single-strand break repair gene XRCC1 causing defective DNA repair. Nucleic Acids Res 1998; 26: 1032–1037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Masson M, Niedergang C, Schreiber V, Muller S, Menissier-de Murcia J, de Murcia G . XRCC1 is specifically associated with poly(ADP-ribose) polymerase and negatively regulates its activity following DNA damage. Mol Cell Biol 1998; 18: 3563–3571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Abdel-Rahman SZ, El-Zein RA . The 399Gln polymorphism in the DNA repair gene XRCC1 modulates the genotoxic response induced in human lymphocytes by the tobacco-specific nitrosamine NNK. Cancer Lett 2000; 159: 63–71.

    Article  CAS  PubMed  Google Scholar 

  14. Lunn RM, Langlois RG, Hsieh LL, Thompson CL, Bell DA . XRCC1 polymorphisms: effects on aflatoxin B1-DNA adducts and glycophorin A variant frequency. Cancer Res 1999; 59: 2557–2561.

    CAS  PubMed  Google Scholar 

  15. Duell EJ, Wiencke JK, Cheng TJ, Varkonyi A, Zuo ZF, Ashok TD et al. Polymorphisms in the DNA repair genes XRCC1 and ERCC2 and biomarkers of DNA damage in human blood mononuclear cells. Carcinogenesis 2000; 21: 965–971.

    Article  CAS  PubMed  Google Scholar 

  16. Fan J, Otterlei M, Wong HK, Tomkinson AE, Wilson III DM . XRCC1 co-localizes and physically interacts with PCNA. Nucleic Acids Res 2004; 32: 2193–2201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. van Gils CH, Bostick RM, Stern MC, Taylor JA . Differences in base excision repair capacity may modulate the effect of dietary antioxidant intake on prostate cancer risk: an example of polymorphisms in the XRCC1 gene. Cancer Epidemiol Biomarkers Prev 2002; 11: 1279–1284.

    CAS  PubMed  Google Scholar 

  18. Rybicki BA, Conti DV, Moreira A, Cicek M, Casey G, Witte JS . DNA repair gene XRCC1 and XPD polymorphisms and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 2004; 13: 23–29.

    Article  CAS  PubMed  Google Scholar 

  19. Hirata H, Hinoda Y, Tanaka Y, Okayama N, Suehiro Y, Kawamoto K et al. Polymorphisms of DNA repair genes are risk factors for prostate cancer. Eur J Cancer 2007; 43: 231–237.

    Article  CAS  PubMed  Google Scholar 

  20. Ritchey JD, Huang WY, Chokkalingam AP, Gao YT, Deng J, Levine P et al. Genetic variants of DNA repair genes and prostate cancer: a population-based study. Cancer Epidemiol Biomarkers Prev 2005; 14: 1703–1709.

    Article  CAS  PubMed  Google Scholar 

  21. Chen L, Ambrosone CB, Lee J, Sellers TA, Pow-Sang J, Park JY . Association between polymorphisms in the DNA repair genes XRCC1 and APE1, and the risk of prostate cancer in white and black Americans. J Urol 2006; 175: 108–112; discussion 112.

    Article  CAS  PubMed  Google Scholar 

  22. Kuasne H, Rodrigues IS, Losi-Guembarovski R, Reis MB, Fuganti PE, Gregorio EP et al. Base excision repair genes XRCC1 and APEX1 and the risk for prostate cancer. Mol Biol Rep 2011; 38: 1585–1591.

    Article  CAS  PubMed  Google Scholar 

  23. Agalliu I, Kwon EM, Salinas CA, Koopmeiners JS, Ostrander EA, Stanford JL . Genetic variation in DNA repair genes and prostate cancer risk: results from a population-based study. Cancer Causes Control 2010; 21: 289–300.

    Article  PubMed  Google Scholar 

  24. Dhillon VS, Yeoh E, Fenech M . DNA repair gene polymorphisms and prostate cancer risk in South Australia-results of a pilot study. Urol Oncol 2009; e-pub ahead of print 12 November 2011; doi:10.1016/j.urolonc.2009.08.013.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang J, Dhakal IB, Greene G, Lang NP, Kadlubar FF . Polymorphisms in hOGG1 and XRCC1 and risk of prostate cancer: effects modified by plasma antioxidants. Urology 2010; 75: 779–785.

    Article  PubMed  Google Scholar 

  26. Lau J, Ioannidis JP, Schmid CH . Quantitative synthesis in systematic reviews. Ann Intern Med 1997; 127: 820–826.

    Article  CAS  PubMed  Google Scholar 

  27. DerSimonian R, Laird N . Meta-analysis in clinical trials. Control Clin Trials 1986; 7: 177–188.

    Article  CAS  PubMed  Google Scholar 

  28. Mantel N, Haenszel W . Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 1959; 22: 719–748.

    CAS  PubMed  Google Scholar 

  29. Higgins JP, Thompson SG . Controlling the risk of spurious findings from meta-regression. Stat Med 2004; 23: 1663–1682.

    Article  PubMed  Google Scholar 

  30. Knapp G, Hartung J . Improved tests for a random effects meta-regression with a single covariate. Stat Med 2003; 22: 2693–2710.

    Article  PubMed  Google Scholar 

  31. Harbord RM, Higgins JP . Meta-regression in Stata. Stata J 2008; 8: 493–519.

    Article  Google Scholar 

  32. Barba M, Yang L, Schunemann HJ, Sperati F, Grioni S, Stranges S et al. Urinary estrogen metabolites and prostate cancer: a case-control study and meta-analysis. J Exp Clin Cancer Res 2009; 28: 135.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Shao N, Xu B, Mi YY, Hua LX . IL-10 polymorphisms and prostate cancer risk: a meta-analysis. Prostate Cancer Prostatic Dis 2011; 14: 129–135.

    Article  CAS  PubMed  Google Scholar 

  34. Xu B, Tong N, Chen SQ, Hua LX, Wang ZJ, Zhang ZD et al. FGFR4 Gly388Arg polymorphism contributes to prostate cancer development and progression: a meta-analysis of 2618 cases and 2305 controls. BMC Cancer 2011; 11: 84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lao T, Gu W, Huang Q . A meta-analysis on XRCC1 R399Q and R194W polymorphisms, smoking and bladder cancer risk. Mutagenesis 2008; 23: 523–532.

    Article  CAS  PubMed  Google Scholar 

  36. Huang Y, Li L, Yu L . XRCC1 Arg399Gln, Arg194Trp and Arg280His polymorphisms in breast cancer risk: a meta-analysis. Mutagenesis 2009; 24: 331–339.

    Article  CAS  PubMed  Google Scholar 

  37. Geng J, Zhang Q, Zhu C, Wang J, Chen L . XRCC1 genetic polymorphism Arg399Gln and prostate cancer risk: a meta-analysis. Urology 2009; 74: 648–653.

    Article  PubMed  Google Scholar 

  38. Hulley HB, Cummings SR, Browner WS, Grady DG, Newman TB . Designing Clinical Research, 3rd edn. Lippincott Williams & Wikins: Philadelphia, 2007.

    Google Scholar 

  39. Anderson MJ, Braak CT . Permutation tests for multi-factorial analysis of variance. J Stat Comput Simulation 2003; 73: 85–113.

    Article  Google Scholar 

  40. Gonzalea L, Manly BF . Analysis of variance by randomization with small data sets. Environmetrics 1998; 9: 53–65.

    Article  Google Scholar 

  41. Viechtbauer W . Conducting Meta-Analysis in R with the metafor Package. J Stat Software 2010; 36: 1–48.

    Article  Google Scholar 

  42. Wang J, Zhao Y, Jiang J, Gajalakshmi V, Kuriki K, Nakamura S et al. Polymorphisms in DNA repair genes XRCC1, XRCC3 and XPD, and colorectal cancer risk: a case-control study in an Indian population. J Cancer Res Clin Oncol 2010; 136: 1517–1525.

    Article  CAS  PubMed  Google Scholar 

  43. Li M, Yin Z, Guan P, Li X, Cui Z, Zhang J et al. XRCC1 polymorphisms, cooking oil fume and lung cancer in Chinese women nonsmokers. Lung Cancer 2008; 62: 145–151.

    Article  PubMed  Google Scholar 

  44. Kang SY, Lee KG, Lee W, Shim JY, Ji SI, Chung KW et al. Polymorphisms in the DNA repair gene XRCC1 associated with basal cell carcinoma and squamous cell carcinoma of the skin in a Korean population. Cancer Sci 2007; 98: 716–720.

    Article  CAS  PubMed  Google Scholar 

  45. Casse C, Hu YC, Ahrendt SA . The XRCC1 codon 399 Gln allele is associated with adenine to guanine p53 mutations in non-small cell lung cancer. Mutat Res 2003; 528: 19–27.

    Article  CAS  PubMed  Google Scholar 

  46. Curtin K, Samowitz WS, Wolff RK, Ulrich CM, Caan BJ, Potter JD et al. Assessing tumor mutations to gain insight into base excision repair sequence polymorphisms and smoking in colon cancer. Cancer Epidemiol Biomarkers Prev 2009; 18: 3384–3388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Weng Z, Lu Y, Weng H, Morimoto K . Effects of the XRCC1 gene-environment interactions on DNA damage in healthy Japanese workers. Environ Mol Mutagen 2008; 49: 708–719.

    Article  CAS  PubMed  Google Scholar 

  48. Huang M, Dinney CP, Lin X, Lin J, Grossman HB, Wu X . High-order interactions among genetic variants in DNA base excision repair pathway genes and smoking in bladder cancer susceptibility. Cancer Epidemiol Biomarkers Prev 2007; 16: 84–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work benefited from the helpful comments of two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z Xu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Prostate Cancer and Prostatic Diseases website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, B., Zhou, Y., Xu, Z. et al. XRCC1 Arg399Gln and Arg194Trp polymorphisms in prostate cancer risk: a meta-analysis. Prostate Cancer Prostatic Dis 14, 225–231 (2011). https://doi.org/10.1038/pcan.2011.26

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/pcan.2011.26

Keywords

This article is cited by

Search

Quick links