Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

8q24 allelic imbalance and MYC gene copy number in primary prostate cancer

Abstract

Four independent regions within 8q24 near the MYC gene are associated with risk for prostate cancer (Pca). Here, we investigated allelic imbalance (AI) at 8q24 risk variants and MYC gene DNA copy number (CN) in 27 primary Pcas. Heterozygotes were observed in 24 of 27 patients at one or more 8q24 markers and 27% of the loci exhibited AI in tumor DNA. The 8q24 risk alleles were preferentially favored in the tumors. Increased MYC gene CN was observed in 33% of tumors, and the co-existence of increased MYC gene CN with AI at risk loci was observed in 86% (P<0.004 exact binomial test) of the informative tumors. No AI was observed in tumors, which did not reveal increased MYC gene CN. Higher Gleason score was associated with tumors exhibiting AI (P=0.04) and also with increased MYC gene CN (P=0.02). Our results suggest that AI at 8q24 and increased MYC gene CN may both be related to high Gleason score in Pca. Our findings also suggest that these two somatic alterations may be due to the same preferential chromosomal duplication event during prostate tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Amundadottir LT, Sulem P, Gudmundsson J, Helgason A, Baker A, Agnarsson BA et al. A common variant associated with prostate cancer in European and African populations. Nat Genet 2006; 38: 652–658.

    Article  CAS  PubMed  Google Scholar 

  2. Gudmundsson J, Sulem P, Manolescu A, Amundadottir LT, Gudbjartsson D, Helgason A et al. Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat Genet 2007; 39: 631–637.

    Article  CAS  PubMed  Google Scholar 

  3. Yeager M, Orr N, Hayes RB, Jacobs KB, Kraft P, Wacholder S et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet 2007; 39: 645–649.

    Article  CAS  PubMed  Google Scholar 

  4. Haiman CA, Patterson N, Freedman ML, Myers SR, Pike MC, Waliszewska A et al. Multiple regions within 8q24 independently affect risk for prostate cancer. Nat Genet 2007; 39: 638–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Witte JS . Multiple prostate cancer risk variants on 8q24. Nat Genet 2007; 39: 579–580.

    Article  CAS  PubMed  Google Scholar 

  6. Robbins C, Torres JB, Hooker S, Bonilla C, Hernandez W, Candreva A et al. Confirmation study of prostate cancer risk variants at 8q24 in African Americans identifies a novel risk locus. Genome Res 2007; 17: 1717–1722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang L, McDonnell SK, Slusser JP, Hebbring SJ, Cunningham JM, Jacobsen SJ et al. Two common chromosome 8q24 variants are associated with increased risk for prostate cancer. Cancer Res 2007; 67: 2944–2950.

    Article  CAS  PubMed  Google Scholar 

  8. Zheng SL, Sun J, Wiklund F, Smith S, Stattin P, Li G et al. Cumulative association of five genetic variants with prostate cancer. N Engl J Med 2008; 358: 910–919.

    Article  CAS  PubMed  Google Scholar 

  9. Ghoussaini M, Song H, Koessler T, Al Olama AA, Kote-Jarai Z, Driver KE et al. Multiple loci with different cancer specificities within the 8q24 gene desert. J Natl Cancer Inst 2008; 100: 962–966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tomlinson I, Webb E, Carvajal-Carmona L, Broderick P, Kemp Z, Spain S et al. A genome-wide association scan of tag SNPs identifies a susceptibility variant for colorectal cancer at 8q24.21. Nat Genet 2007; 39: 984–988.

    Article  CAS  PubMed  Google Scholar 

  11. Zanke BW, Greenwood CM, Rangrej J, Kustra R, Tenesa A, Farrington SM et al. Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24. Nat Genet 2007; 39: 989–994.

    Article  CAS  PubMed  Google Scholar 

  12. Kiemeney LA, Thorlacius S, Sulem P, Geller F, Aben KK, Stacey SN et al. Sequence variant on 8q24 confers susceptibility to urinary bladder cancer. Nat Genet 2008; 40: 1307–1312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kupfer SS, Torres JB, Hooker S, Anderson JR, Skol AD, Ellis NA et al. Novel single nucleotide polymorphism associations with colorectal cancer on chromosome 8q24 in African and European Americans. Carcinogenesis 2009; 30: 1353–1357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tuupanen S, Niittymaki I, Nousiainen K, Vanharanta S, Mecklin JP, Nuorva K et al. Allelic imbalance at rs6983267 suggests selection of the risk allele in somatic colorectal tumor evolution. Cancer Res 2008; 68: 14–17.

    Article  CAS  PubMed  Google Scholar 

  15. Qian J, Jenkins RB, Bostwick DG . Detection of chromosomal anomalies and c-myc gene amplification in the cribriform pattern of prostatic intraepithelial neoplasia and carcinoma by fluorescence in situ hybridization. Mod Pathol 1997; 10: 1113–1119.

    CAS  PubMed  Google Scholar 

  16. Jenkins RB, Qian J, Lieber MM, Bostwick DG . Detection of c-myc oncogene amplification and chromosomal anomalies in metastatic prostatic carcinoma by fluorescence in situ hybridization. Cancer Res 1997; 57: 524–531.

    CAS  PubMed  Google Scholar 

  17. Liu W, Xie CC, Zhu Y, Li T, Sun J, Cheng Y et al. Homozygous deletions and recurrent amplifications implicate new genes involved in prostate cancer. Neoplasia 2008; 10: 897–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lapointe J, Li C, Giacomini CP, Salari K, Huang S, Wang P et al. Genomic profiling reveals alternative genetic pathways of prostate tumorigenesis. Cancer Res 2007; 67: 8504–8510.

    Article  CAS  PubMed  Google Scholar 

  19. Ribeiro FR, Henrique R, Martins AT, Jeronimo C, Teixeira MR . Relative copy number gain of MYC in diagnostic needle biopsies is an independent prognostic factor for prostate cancer patients. Eur Urol 2007; 52: 116–125.

    Article  PubMed  Google Scholar 

  20. Gurel B, Iwata T, Koh CM, Jenkins RB, Lan F, Van Dang C et al. Nuclear MYC protein overexpression is an early alteration in human prostate carcinogenesis. Mod Pathol 2008; 21: 1156–1167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Canzian F, Salovaara R, Hemminki A, Kristo P, Chadwick RB, Aaltonen LA et al. Semiautomated assessment of loss of heterozygosity and replication error in tumors. Cancer Res 1996; 56: 3331–3337.

    CAS  PubMed  Google Scholar 

  22. Liu W, Wu X, Zhang W, Montenegro RC, Fackenthal DL, Spitz JA et al. Relationship of EGFR mutations, expression, amplification, and polymorphisms to epidermal growth factor receptor inhibitors in the NCI60 cell lines. Clin Cancer Res 2007; 13: 6788–6795.

    Article  CAS  PubMed  Google Scholar 

  23. Moroni M, Veronese S, Benvenuti S, Marrapese G, Sartore-Bianchi A, Di Nicolantonio F et al. Gene copy number for epidermal growth factor receptor (EGFR) and clinical response to antiEGFR treatment in colorectal cancer: a cohort study. Lancet Oncol 2005; 6: 279–286.

    Article  CAS  PubMed  Google Scholar 

  24. Potts PR, Yu H . Human MMS21/NSE2 is a SUMO ligase required for DNA repair. Mol Cell Biol 2005; 25: 7021–7032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wirtenberger M, Hemminki K, Forsti A, Klaes R, Schmutzler RK, Grzybowska E et al. c-MYC Asn11Ser is associated with increased risk for familial breast cancer. Int J Cancer 2005; 117: 638–642.

    Article  CAS  PubMed  Google Scholar 

  26. Tuupanen S, Turunen M, Lehtonen R, Hallikas O, Vanharanta S, Kivioja T et al. The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling. Nat Genet 2009; 41: 885–890.

    Article  CAS  PubMed  Google Scholar 

  27. Kilpivaara O, Mukherjee S, Schram AM, Wadleigh M, Mullally A, Ebert BL et al. A germline JAK2 SNP is associated with predisposition to the development of JAK2(V617F)-positive myeloproliferative neoplasms. Nat Genet 2009; 41: 455–459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all the men who volunteered to participate in this genetic study. This research was funded in part by the Department of Defense (DAMD W81XWH-07-1-0203 and DAMD W81XWH-06-1-0066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R A Kittles.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, H., Liu, W., Roberts, W. et al. 8q24 allelic imbalance and MYC gene copy number in primary prostate cancer. Prostate Cancer Prostatic Dis 13, 238–243 (2010). https://doi.org/10.1038/pcan.2010.20

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/pcan.2010.20

Keywords

This article is cited by

Search

Quick links