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Allometric scaling, size distribution and pattern

formation of natural cities
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ABSTRACT There has been a strong interest in more cogent definitions on economies of
scale to reveal general urban growth laws and to develop urban performance metrics.
Unstructured data, including satellite images, will provide us with new sources to do so by
defining cities as aggregates of human activities. Such a uniform definition on the basis of
nighttime light clusters is more consistent and economically meaningful than administrative
or official boundaries. In comparison with patterns of city systems found in traditional census
data, we examined the allometric scaling, size distribution and fractal geometry of natural
cities. It can be concluded from our empirical analysis on regional, country and continental
scales that a super-linear scaling between lightness and area with a stable exponent across
different low light threshold levels generally holds for natural cities. But Zipf's Law does not
always apply over the whole range of lightness thresholds. Furthermore, we build a model
based on the simple geometric matching mechanism to reproduce the self-organized
formation process of nighttime light patterns. The statistical properties including allometries,
size distributions and fractal geometries generated by our model are in good agreement with
empirical evidence. These findings have profound implications for understanding the effects
of simple aggregation behaviour in primitive stages of city formation and the urbanization
process.
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Introduction

or the first time ever, more than half of the world’s

population lives in cities, and this proportion continues to

grow. By 2030, 6 out of every 10 people will live in cities, and
by 2050, this proportion will increase to 7 out of 10 as some
2 billion people move to cities (United Nations Human Settle-
ments Programme, 2010; World Health Organization, 2010).
Rapid urbanization and accelerating socioeconomic development
have generated global problems from climate change to incipient
crises in food, energy and water availability, public health, as well
as the global economy. With more people leading urban lives and
the number and size of cities expanding everywhere, it is increas-
ingly important to know more quantitatively the way a city
organizes itself. Identifying universal patterns in cities is extremely
crucial for furthering our understanding of urban dynamics, and
may help to manage many contemporary global challenges such as
the use of natural resources and the growth of urban poverty.

Cities as typical self-organized systems, exhibit universal
macroscopic patterns including allometric scaling, scale-free
distribution and fractal geometry (Portugali et al, 2000). In the
first place, it has been statistically proved that if all cities follow
some proportional growth process, their distribution (at least in
the upper tail) will automatically converge to Zipf’s Law (Zipf,
1949; Gabaix, 1999; Coérdoba, 2008). However, since the key
empirical article in 1980s (Rosen and Resnick, 1980), there have
always been disputes whether Zipf’s Law can be observed in
population of most cities (or urban agglomerations) on regional,
country, continental and even global scales. Contrary to the
common belief, from an underlying power law distribution of city
sizes and a simple random sampling, one cannot obtain a rank-
size rule described in Zipf’s Law for the largest cities (Cristelli
et al., 2012). Thus any examination concerning the distribution of
city population or areas is required to be consistent and complete
in sampling (called “coherence” by Cristelli et al.) before any valid
conclusion can be arrived at.

Self-organized cities as consumers of energy and resources, and
as producers of artefacts, information and waste, have often been
compared with biological entities (Macionis and Parrillo, 2004).
In living organisms, various macro variables can be well predicted
by the body size since mechanical similarity requires allometric
growth (Gould, 1966; West and Brown, 2005), and such scaling
laws have also been found for city systems. The exponents con-
cerned fall into three categories: linear associated with individual
human needs, sub-linear with infrastructure and super-linear
with social interactions (Bettencourt et al., 2007). In contrast, the
allometric scaling investigated on different scales, such as the ones
among countries or provinces, yield divergent conclusions. For
instance, it has been found that population increases sub-linearly
with area while GDP increases linearly with population for
countries (Zhang and Yu, 2010).

From a morphological perspective, cities can also be viewed
as typical fractals in that their structure features statistical self-
similarity (Batty and Longley, 1986, 1994). Therefore, their
complexity degree can be quantitatively evaluated, in general,
using fractal dimension. For city systems, fractal dimension also
characterizes the hierarchy of different subcentres or clusters
across many scales (Batty, 2008).

Although the aforementioned universal patterns have been
extensively documented for city systems, all these scaling
exponents (characterizing Zipf’s Law, allometry and fractal
properties) are notably sensitive to system description specified
by consistently defined boundaries. This is particularly the case
for indicators that have a non-linear relationship with population
size (Arbesman et al., 2009). However, almost all the primary evi-
dence was gathered with cities delineated, somewhat arbitrarily,
by political or geographic boundaries on the basis of
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administrative, legal or historical status of a particular city. Such
a problem of ambiguity in the definition of cities and difference in
standards adopted across nations gives rise to incongruous
comparisons on large scale. In fact, limited by the boundaries in
the sense that city governments have jurisdiction over, traditional
census data and statistics are mostly collected in an area which
is not economically meaningful (Angel et al, 2005). Many
challenges need to be overcome before identifying patterns of
behaviours or devising a theory across cities, among which the
most pivotal concern is how “cities” are defined.

There have been attempts to construct cities from the bottom
up (Makse et al, 1995) on the basis of geographical features of
high-quality micro data. A recently introduced algorithm, the
City Clustering Algorithm (CCA) (Rozenfeld et al., 2008), defines
cities as maximally connected clusters of populated sites identified
from gridded data at high resolution (Rozenfeld et al., 2011). In
comparison with data collected from conventional “manual”
sources such as the traditional population census and household
interview, remote sensing data in the form of nighttime light are a
more uniform, consistent and independent record for all world
land areas (except for high latitudes) (Zhang and Seto, 2011).
Therefore, it inspires us to take a step forward and systematically
redefine cities from the bottom up in a much more natural
and unified way with global composites of temporally stable
nighttime light.

On the other hand, numerous city models have been designed
to understand the self-organized nature of cities and to elucidate
the origins of scaling laws. For example, some early models based
on statistical physics, such as DLA (Diffusion Limited Aggrega-
tion) model (Batty et al., 1989) and correlated percolation model
(Makse et al., 1995, 1998), successfully manifested some scaling
properties and fractal nature resembling those of real city systems.
Recent models concentrate more on networks embedded in
city systems, including infrastructure networks, street networks,
social networks and so on. Confirmed by exponents measured in
thousands of cities worldwide at different levels of development,
the theoretic framework based on a hierarchical street network
model (Bettencourt, 2013) turned out to be powerful in explaining
both sub-linear and super-linear scaling relations. Although all
these models are capable of evoking our deeper comprehension of
the mechanism underlying city self-organization, no single model
can reproduce all the significant patterns simultaneously so far.
Therefore, there is still an urgent need for another (even simpler)
model, which can generate as many as possible statistical patterns
found in empirical evidence, to adequately capture the basic rules
governing their formation.

Based on the high correlation between nighttime light and
economic variables (for example, gross domestic product, urban
population and so on) in a statistical framework for both time-
series and cross-sectional approaches, it is found that lightness
can be used as a proxy for socioeconomic indicators on country
and regional scales, especially for countries with low-quality
statistical systems (Elvidge et al., 2007; Sutton et al., 2007; Ghosh
and Powell, 2010; Chen and Nordhaus, 2011; Henderson et al,
2012). It is necessary to point out here that even after careful
calibration, nighttime light is never equivalent to or easily
replaceable with GDP or population. In fact, as objective records
of humanity’s presence on the earth’s surface (Elvidge et al,
2007), the distribution of nighttime light has also been used to
develop proxies for urbanization (Sutton, 2003), armed conflicts
(Agnew et al., 2008; Li et al., 2013), and, more straightforward,
the spatial extent of light pollution (Butt, 2012; Bennie et al.,
2014). For most places on the earth, stable nighttime light
detected (given the preprocessing in “Methods” section) from
outer space represents human activities. The brightness of
artificial light increases, in general, as the human activities taking
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place at corresponding sites get more intense. The intensity can
both be driven up by the size of population group participating in
the activity, and by the value of goods or services produced at that
spot. In this sense, higher activity intensity generates more
significant development, which is usually accompanied by
anthropogenic landscape modification.

Unstructured data, which are predicted to account for 90% of all
data created in the next decade (Gantz and Reinsel, 2011), provide
us with relatively untapped sources of insights to define cities as
systems of interactions. In this article, we take a step forward in
fulfilling the potential of nighttime light data by defining natural
cities “from the bottom up” with high-resolution satellite imagery
(DMSP-OLS dataset). By this means, cities are defined through a
completely data-driven approach with objective, spatially explicit
and globally available empirical measurements of human develop-
ment. Such a straightforward method is therefore supposed to be
more economically meaningful than administrative or official
definition of cities. We then systematically investigate the size
distribution, allometric scaling and fractal dimension of natural
cities. As the most panoramic and immediate embodiment of
human activity and city growth (Frolking et al, 2013), the
gridded imaging data allow us to compare the scaling exponents
of natural cities across countries and continents. Furthermore, a
dynamic model based on the simple geometric matching
mechanism is built to simulate the pattern formation process
identified in natural cities. Not only does our model successfully
reproduce the allometric scaling and size distribution patterns,
but also statistically generates comparable characteristic para-
meters as is in the empirical data. This is also the first attempt
ever to model how nighttime light organizes itself into light
clusters and grows over time.

There is no doubt that modern cities are combinations of top-
down planning and bottom-up aggregation. However, the
political aspect of planning and the political role of planners
had not been emphasized until the 1960s and the early 1970s
(Pissourios, 2014). In comparison with political discourses of
urban intervention, bottom-up definition of city systems will help
us get closer to the essence of human settlements. Our findings
have profound implications for understanding the effects of
simple aggregation behaviour in primitive stages of city formation
and the urbanization process.

Methods

Material. The global satellite images of nighttime light used in our study are
collected by the Operational Linescan System (OLS) of the US Air Force Defense
Meteorological Satellite Program (DMSP) and archived at NOAA National
Geophysical Data Center (NGDC). The flagship product of this dataset (Version 4)
is the stable lights, which is available to download at http://ngdc.noaa.gov/eog/
dmsp/downloadV4composites.html. It is an annual cloud-free composite of the
average digital brightness values for the detected nighttime light, altered to remove
ephemeral lights and background noise (Elvidge et al., 2011). The image is 30-arc-
second gridded and spans from — 180 to 180 degrees longitude and from — 65 to 75
degrees latitude. The digital number (DN) values of the nighttime light range from
1 to 63, while 0 represents the identified and eliminated background noise and 255
represents an area where no cloud-free observation has been collected. In addition,
although sunlit data, moonlight, glare, observations containing clouds and lighting
features from the aurora are excluded from the DMSP nighttime stable lights
dataset, gas flares are not. Therefore, we used the global gas flare map generated by
NGDC (Elvidge et al., 2009) to identify and remove gas flares, to reduce the
possibility of mistaking them for urbanized areas. This map can be downloaded at
http://ngdc.noaa.gov/eog/interest/gas_flares_countries_shapefiles.html.

We obtained the administrative boundary data from GADM (the Database of
Global Administrative Areas, available online at http://gadm.org/) to extract our
regions of interest (ROI) from the global nighttime light images. Since we need to
qualitatively study the evolution of global nighttime light in nearly two decades on
a large geographic scale, it is necessary to inter-calibrate (Elvidge et al., 2009) and
re-project (Imhoff et al., 1997) each image correspondingly (Cauwels et al., 2014).
In the examination of basic scaling properties of nighttime light clusters, we
extracted regions with a vast territory and a huge population like China and
Contiguous United States (CONUS) as our ROL By using ArcGIS, we re-projected
the nighttime light images of CONUS and China into Lambert conformal conic

projection. For detailed comparison between nighttime light agglomerations
detected and simulation results, we narrowed our scope down to part of the south
central CONUS in which clusters including saturated lightness only makes up a
negligible proportion. Due to the existence of upper limit in DN, there are some
problems with respect to simple integration or summing of lights as a proxy
measure of light emission from a given area. With the purpose of avoiding the
problems of saturation in the DMSP images, a non-linear relationship between
population and areal extent was used by Sutton to create a proxy measure of GDP
(Sutton et al., 2007). For simplification, when to estimate the value of allometric
scaling exponents, instead of referring to other data sources and indirect
relationships, we only fitted the data points representing natural cities without
saturated lightness. This can be validated by the fact that natural cities containing
saturated pixels only account for a very small percentage.

Simulation. We use python 2.7 plus numpy and scipy packages to conduct all the
simulations.

Results

Definition of natural cities. In order to define cities in a more
natural and unified way, we explore the nighttime light images by
varying the low light thresholds designating the spatial extent of
contiguous development. That is, pixels whose digital number
(DN) of lightness are below the threshold (DN;,) will be set as unlit,
which means setting the digital number values of corresponding
pixels to be 0 (Cauwels et al., 2014). We apply “burning algorithm”
(Stauffer and Aharony, 1994) (see Supplementary Section 1 online)
to identify nighttime light clusters representing natural cities, and
require connected pixels to have lightness above the given
threshold. In other words, for each stable light cluster identified, a
natural city is defined at the same spot, whose area is the extent of
land surface represented by all pixels in that cluster. Regardless of
whether night lights depict population, economic activity, land
cover modification or merely stable emitted light, natural cities are
defined with explicit metric for anthropogenic development on
global scales in this approach. Therefore, the adopted definition of
natural cities are dependent on the threshold DNy, and higher
DNy, generally corresponds to more intense (or more developed)
cutoffs while lower thresholds extend the lighted area to include
less intensively developed periurban or suburban fringes and
agricultural areas. We also suggest a specific threshold to define the
natural cities according to the statistical properties which will be
discussed in the following sections (see Fig. 1).

In this work, we set out to understand cities as a system of
interactions, in other words, an aggregate of human activities.
Viewing nighttime light as the embodiment of human activities
(not necessarily human presence), the outline of maximal
connected nighttime light clusters identified by clustering
algorithm given specific threshold are defined to be the
boundaries of natural cities. By using global composites of
temporally stable nighttime light, we redefined cities from the
bottom up by setting their contours in a more consistent and
unified way. After delineating the geographic boundaries, the
population and areas of corresponding cities can be calculated by
adding up the population counts and land coverage within its
boundary. Other socioeconomic indicators of each natural cities
can also be calculated by the sum of related measures of
socioeconomic activities that have happened within each
boundary. Technically, gridded datasets of demographic and
socioeconomic statistics are handy for such calculation.

Size distribution of natural cities. The distribution of city size
follows Zipf’s Law (Zipf, 1949), that is, the size of the large cities
decays with its descending rank r in a power law r~% with
an exponent a. It has already been pointed out that the size
(that is, area) of nighttime light clusters also obeys Zipf’s Law
(Small et al, 2011; Jiang et al., 2014). Since the process from
fitting the distribution to validating the hypothesis that the data is
distributed according to a power law has been covered rigorously
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Figure 1 | The nighttime light in natural cities of Contiguous United States (CONUS). The visualization is based on satellite image data (2009) with
different thresholds (DN;,). The nighttime light cut off by DNy, = 0 (a), 30 (b). The spatial distribution of natural cities with DN, =0 (c), 30 (d).
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Figure 2 | Examples of rank-size distribution and allometry relationship of natural cities. (a) Rank-size distribution of natural cities in China (2009)
with different low light thresholds. (b) Allometric scaling between total lightness and area of natural cities in US (CONUS region, 2009) with

different thresholds.

in the work of Clauset et al., we followed technical details of their
maximum likelihood methods (Clauset et al., 2009) for pre-
liminary test (see Supplementary Section 2 and Supplementary
Fig. S11 online). Furthermore, we find in this study that only the
upper tail of size distribution curve can be well described by a
power law, whereas the whole spectrum can be better depicted
by the discrete generalized beta distribution (DGBD) function
(Martinez-MeKler et al., 2009) (see Fig. 2).

(Tmax + 1 — r)b
rO{,

S(r) = A (1)
in which 7,y is the total number of natural cities in the region
under examination, r is the rank, and S(r) is the size of the r—th
largest connected cluster measured by the area it covers as is in
the image after preprocessing (more details in Methods). A, b, and
a are parameters to be estimated, in which exponent b char-
acterizes the exponential head. The conventional Zipf’s Law (with
a power law exponent @) can be recovered by setting b=0
(see Supplementary Section 2 online). In comparison with only
one exponent at which city size decays linearly in the log of rank,
estimation on the basis of DGBD provides us with an opportunity
to scrutinize and evaluate our model across the whole spectrum of
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size distribution. In fact, we take into account the shape of the
head of the size distribution curve in our model design. After all,
if the only testable prediction a model makes is about the shape of
the tail, it can be intrinsically hard to check its design.

China is selected as the representative country to illustrate
the size distribution of natural cities, shown in Fig. 2(a) (see
Supplementary Section 4 online). As the low light threshold is
increased from dim to bright, the overall pattern changes for two
reasons: (1) the spatial extent (area) of each spatially contiguous
cluster on developed land shrinks, and (2) large clusters
connected by dimmer regions fragment as dimmest lights are
exceeded by the threshold (Small et al, 2011). This results in
increasing the curvature of the rank-size distributions and
decreasing the dominance of the largest cities.

By varying the threshold value DNy, we systematically
investigate the size distributions of the United States and China
(see Fig. 3; see Supplementary Fig. S3 online). By taking the
average of the power-law exponents of the size distributions from
1992 to 2009 under each DN threshold (DNy,), it is shown that
the absolute value of exponent reaches a local maximum in both
the United States and China at 4 (and global minimum both at 15).
This indicates that there exists the most striking size difference
between the largest and smallest cities as defined. The abrupt
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Figure 3 | Effect of low light thresholds on average exponents. The average slope (or power law exponents) of size distribution ({(«)) and the average
allometric scaling exponents (($)) of natural cities from 1992 to 2009 under different thresholds. For both US and China, the local maximum of («)

and approximately the local maximum of () are achieved at DNy, = 4.

transition of the power law exponent with decreasing DNy, is
analogous to the phase transition phenomenon observed in
percolation models (Stanley et al., 1999). In fact, anthropogenic
land cover development, by its nature, is consistent with the
notion of a spatial phase transition from more isolated to more
interconnected development patterns (Small et al., 2011). There-
after, different from the “natural cities” defined by Jiang et al.
according to “head/tail breaks” (Jiang et al, 2014), we are
especially interested in the definition with DNy, set to be 4.

Allometric scaling of natural cities. Previous studies have
proved that many socioeconomic variables, such as GDP, number
of patents and total salary, can be predicted by the size of a city
which is measured by the population (Bettencourt et al., 2007).
In natural cities specified by nighttime light clusters, we study
the most important allometry between total nighttime lightness
which is the embodiment of human activities and city size
quantified by the areas of corresponding clusters. For a region we
considered, such as Contiguous United States (CONUS) and
China, let L; denote the total nighttime lightness in natural city i,
and §; the size (that is, total area) of it, then we suggest that the
following scaling form holds:

(2)
Parameter f is the allometric exponent which characterizes the
increment speed of lightness relative to spatial expansion.
Therefore, larger  indicates more remarkable scale effect of the
natural cities in regarding regions.

The allometric exponent is relatively insensitive to the
threshold compared to the Zipf’s exponent. We select the United
States (CONUS region) as an example to illustrate the allometric
relationship in Fig. 2(b). Exponents across different thresholds are
largely concentrated in the interval [1.11 — 1.14], fairly close to the
allometric scaling between economic activity and city population
previously demonstrated in extensive research (Bettencourt et al,
2007). By taking the average of the allometric scaling from 1992
to 2009 under each threshold (DNy,), it is shown that the
exponents of both the United States and China generally decrease
as DNy, varies from dim to bright while remain above 1 (see Fig. 3).
It is interesting to observe from Fig. 3(b) that at the low light

Li~S

threshold DN, =4, both the United States and China attain
almost the same value which, more importantly, also approx-
imates their inflection points.

The fractal nature of natural cities. Cities are classic examples of
fractals in that their form reflects a statistical self-similarity or
hierarchy of clusters (Batty and Longley, 1994). We use the stan-
dard box-counting method to calculate all the fractal dimensions
of natural cities larger than 60 x 60 km? in the North America
(for top 40 largest cities in the United States, see Supplementary
Table S1 and Fig. S6-10 online), and plot against the cluster size in
Fig. 4(a). The trend that the fractal dimensions increase with
cluster size is quite clear in Fig. 4(b). Albeit not influential on the
dimension computed, saturation effect is visualized here by dis-
tinguishing clusters including no pixels at the upper limit of
lightness with grey marker in Fig. 4(a).

Comparison with MSA and CCA. It is a long-standing problem
that different definitions of spatial units based on administrative
boundaries give rise to inconsistent conclusions at different scales
(Rozenfeld et al., 2008). In comparison with our definition of
natural cities, administrative boundaries of MSAs provided by the
US Census Bureau (available online at http://www.census.gov/
geo/maps-data/data/cbf/cbf_msa.html) are constructed manually
based on the subjective judgement. Since they are only available
for the most populated cities in the United States, any study of
human agglomerations based on MSA is limited within the subset
at the upper tail of size distribution. Moreover, due to the fact that
many MSAs are constituted by aggregating small disconnected
clusters, this definition framework overestimates the area of small
agglomerations (see Fig. 5 (a)) by including large unoccupied
areas (Oliveira et al, 2014). As a consequence, super-linear
scaling exponents associated with interactions are supposed to be
smaller for MSAs than natural cities.

While MSA may delineate similar areas as natural cities (given
proper DNy,) for large and developed agglomerations (see Fig. 5 (c)),
its origin for statistical purpose makes MSAs left behind
by the real dynamics of city systems that is taking place.
Natural cities that come from the mergence of previously separate
agglomerations tend to be designated into different MSAs as
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Figure 4 | Fractal dimension v.s. size of clusters for (a) North America (2009) (DN, =4) and (b) model simulation. One example of using box-
counting method in calculating the fractal dimension of nighttime light cluster is illustrated at the lower right corner in (a). Saturated clusters marked
in yellow include pixels with DN equals to DN,,,, of the satellite image, while unsaturated ones marked in grey only include pixels with DN smaller
than DN,,,,. Only the fractal dimension of clusters larger than 60 x 60 km? is calculated.

before (see Fig. 5 (b)). Recently, as a revision of conventional
MSA, a two-step methodology is developed which allows for a
dynamic, economically meaningful definition of cities (Arcaute
et al., 2015). This revision greatly improves the consistency of
definition by overcoming constraints of historical dependence
and by supporting implementation in almost all countries.
However, since the unit of agglomeration for this algorithm
must be division or district already defined for administrative or
political purposes, the realizations of such definition actually vary
among different countries.

Methodologically, the definition of natural cities is more
similar to CCA than MSA. The uniqueness of the idea behind
natural cities lies in our emphasis on human activities over
human presence. To demonstrate how the definition based on
nighttime light will affect the allometric exponents, we examined
the pivotal allometric relationship between area and population
(see Supplementary Section 12 and Fig. S13 online). Specifically,
given a relatively low DNy, (for example, DNy, =4), natural cities
are neither as overestimated as conventional MSAs, nor as
actually populated as cities defined by CCA. Places significantly
influenced by human activities yet not highly populated are taken
into account as parts of natural cities, which can explain possible
differences in scalings compared with CCA.

Modelling the pattern formation in nighttime light clusters.
Most human activities scale super-linearly with city size, for the
number of potential face-to-face interactions increases more than
proportionately (Batty, 2011). In essence, our definition of natural
cities based on nighttime light clusters views city systems as sets
of interactions which enable construction, production and crea-
tion. We build a model from this viewpoint to reproduce the
patterns recognized in the empirical nighttime light clusters.
Consider a Wx W lattice as the correspondence of the interested
region. At the beginning, this is an empty place. At each time
step t, this region can either (1) generate a new cluster (city) with
a probability ¢; or (2) expand one of the existing cluster (city)
with the probability (1 —¢).

If rule (1) is activated, a random position X € {(x, y)lx<W
and y< W} is selected as the place where a new cluster forms.
Then m (uniformly distributed in [1,m,]) new settlements
represented by points are generated around X in a distance less
than r to become the first residents of this new city. If rule (2) is
activated, then a new settlement p is generated and will randomly
select an available place X in the region to settle down. Here, X is
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available if there is at least one existing settlement within the r
radius of X (see Fig. 6). We call this rule as the geometric
matching mechanism which is more important than other rules.
In such scenario, a new point can settle down at any available
place no matter how many existing settlements are already there.

However, due to the basic needs of living materials and the
scarcity of natural resources, densely populated area is unattrac-
tive, even not liveable, for newcomers. In real life, the crowding
effect should also be taken into consideration. Assuming that
i can settle down at the place X with a probability II(u(X))=
u(X)~7 which depends on the local density of settlements, in
which p(X) is the total number of existing settlements within the
r radius of X. y is a non-negative free parameter called crowding
coefficient in our model. Therefore, if the place X is very crowded,
it is highly probable that i may fail to settle down there.

In this way, new settlements join this region sequentially. At
each time step, we recognize clusters by identifying all connected
settlements as one unique cluster. Here, settlements i and j are
connected if their distance is less than r. According to (2), the
cluster will naturally be expanded through random selection,
while larger clusters may have higher probability to be selected
since they can provide more available positions. When a cluster
expands, it may collide with another one and spontaneously
merge into a new huge cluster. To simulate the formation of
natural cities in our ROI, the model can technically generate
settlements according to the following steps:

Step I: Generate a random number &;

Step 2. If £<e, then pick up any place X in Wx W region to
generate m new settlements around X (build up a new
cluster);

Step 3:  Otherwise

Step 3.1: Pick up a random place X in all the available places
(close to existing settlements);

Step 3.2: Generate a random number y, and if w<u(X) 77, then
generate a new settlement at X (expand an existing
cluster).

Step 4:  Identifying all clusters of settlements.

Step 5: Go to Step 1 until the total number of clusters in the region

is equals to the number of clusters in the empirical data.

We suppose that each settlement can interact with its
connected neighbours within r radius, and the intensity of
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Figure 5 | The comparison between MSAs and natural cities. The nighttime
light is plotted inside the administrative boundaries of MSAs including
(a) Boise City-Mountain Home-Ontario (ID-OR); (b) Omaha-Council
Bluffs-Fremont (NE-IA) and Lincoln-Beatrice (NE); and (c) Columbus-
Marion-Zanesville (OH), Dayton-Springfield-Sidney (OH), and
Cincinnati-Wilmington-Maysville (OH-KY-IN). Only the nighttime light
in (c) is cut off by the low light threshold with DN, = 4.

Figure 6 | An illustration of the rule of matching growth in the model.
There are three clusters which are identified by different colours. The
points are existing settlements. Each settlement lies in the r radius of
another existing settlement.

socioeconomic interaction (equal to the number of its neigh-
bours) is proportional to the lightness at that place. Then, the
total lightness of cluster s is calculated as the following equation:

L-Yo )

jeCs

in which C, denotes the set of settlements in the cluster s, O; is the
set of all neighbours of settlement j within r radius. Similarly, we
define A, the size of the cluster s as the total number of lattices
covered by these settlements. One lattice is covered by cluster s if
there is at least one settlement belonging to s in this lattice.
Therefore, we can study the allometric scaling relationship
between L, and A, as well as the distribution of A,.

To sum up, there are five parameters in the model:
W, 1, €,7, mg, only three of which (¢, y, m) are free. W=1000 is
set to the size of the region considered, and r is fixed to be 1.
v is interpreted as the sensitiveness toward the crowdedness of the
region. It can adjust the allometric scaling exponent between Aj
and L,. e models the relative rate of frequency between expanding
a city and building a new one. This parameter can take effect on
the slope of the size (that is, area) distribution curve. As the
maximum settlements to be built up in a new cluster, m, can
influence the exponential head of the size distribution curve.

Actually, when we set €=0 and my =1, the model is analytic
solvable (see Supplementary Section 7 online). The allometric
scaling exponent is:

1

f=1+1 . (4)

Therefore, the scaling exponent varies in the interval [1,2]
which is consistent with our empirical observations. When
W— o0, ex0 but is non-zero, and m, is small, the growth
process of clusters can be understood as a sub-linear preferential
attachment (Yule-Simon) process (Krapivsky et al, 2000)
because the clusters are approximately independent each other
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Figure 7 | The comparison between the model results and empirical data with DN, =4 in 2009. (a) Satellite image of nighttime light clusters (or
natural cities as defined above) in our ROI from CONUS. (b) The clusters (or natural cities) grown by the model. (c) The size distributions of natural
cities for nighttime light image and model simulation. (d) The allometric scaling between total lightness and size of natural cities for nighttime light

image and model simulation.

when W — oo, and the growth of an existing cluster is

proportional to its size. Therefore, the size distribution of clusters

can be solved as the following formula when t— oo (see
1

Supplementary Section 8 online),
A\ 2 AT _ pl-n
CERCES)
c 1—n

where P(A)dA is the probability of a cluster with size in
[A,A+dA]. ¢ is the constant coefficient of the scaling
relation between A; and N,, the total number of settlements
in cluster s. n=(2+2y)/(3+2y)<1 1is the exponent of the
same scaling relation. ¢ is the solution of the equation
(1—2¢)/e=> 2, HJIF:I (14 ¢/fM) . This distribution resembles
a power law if 5 is close to 1, and the exponent is not analytic
solvable (Krapivsky et al., 2000).

Different from observed dynamics of clusters identified with
CCA from 1981 to 1991, which exhibit all five types of changes
(that is, no change, expansion, reduction, division and merge) in
cluster shape (Rozenfeld et al., 2008), our model exhibits only
three types (that is, no change, expansion and merge) in
computer simulations. Since clusters may collide each other and
merge together over time, they are generally not independent.
Therefore, the size distribution and allometric scaling exponents

P

5

P(A) =

(5)

8

may not follow previous analytic values exactly. We implemented
a series of numeric experiments to generate 921 clusters, namely a
multi-city system containing 921 natural cities, in comparison
with a nighttime light satellite image containing the same number
of natural cities identified (denote the corresponding area as our
region of interest, or ROI for short; see detailed information of
ROI in Supplementary Section 3 online). By tuning y to 1.5 and ¢
to 0.03, we can obtain simultaneously the exponents of the
allometry and Zipf’s distribution comparable with, if not exactly
equivalent to, those from natural cities within the multi-city
system in our region of interest (see Fig. 7(c) and (d)).

Each cluster, namely every single natural city in the multi-city
system generated on the basis of simple rules of interaction and
land development, also manifest self-similarity across scales. Thus
the extent to which they fill space can be measured by their fractal
dimension. Instead of computing fractal dimension for each
cluster, we study the largest cluster (in most cases, this is the
cluster that first comes into being in simulation) in different time
steps. Such tracking evaluation is meaningful since the growth
processes of all other clusters can just be viewed as duplication of
the course through which the largest cluster expands. We also
find a stable positive correlation between its size and fractal
dimension (see Fig. 4(b)) in general. Since all clusters expand
following the same rule, our model predicts such a positive
correlation between area and fractal dimension of clusters.

11:15017 | DOI: 10.1057/palcomms.2015.17 | www.palgrave-journals.com/palcomms


http://dx.doi.org/10.1057/palcomms.2015.17
http://dx.doi.org/10.1057/palcomms.2015.17
http://www.palgrave-journals.com/palcomms

ARTICLE

Table 1| The exponents of the United States, China and the
six continents

Region b o B

The United States 0.64 1.22 114
China 0.56 1.25 112
Africa 0.69 0.94 114
Asia 0.58 1.22 1.10
Australia 0.79 0.82 1.28
Europe 0.53 1.27 112
South America 0.79 0.81 113
North America 0.65 118 112

Notes: b and a are parameters estimated from DGBD regression of the size distributions. § is the
allometric exponent between lightness and area. All values are estimated by setting DNy, =4
in 2009.

This prediction is validated by empirical data on regional, country
and continental (see Fig. 4(a)) scale. However, it is also
noteworthy that the fractal dimensions from simulation are in
general larger than that from empirical results. As can be directly
perceived through Fig. 7(a) and (b), clusters generated by our
model are more compact in comparison with real natural cities.
In short, our model exploits the simple mechanisms to
reproduce all the observed empirical patterns of natural cities.
Among all the rules, the geometric matching (rule 2) is the most
crucial one—it indicates that the connection to and thus
interaction with neighbours is of fundamental importance.

Discussion

Previous sections present the size distribution, allometric scaling,
and fractal geometry of natural cities in two countries. However,
the regions we focus on in this study of natural cities is not
limited by the country border lines, but can be extended to
continental scale. It is interesting to make a comparison of the
exponents among six continents (Africa, Asia, Australia, Europe,
South America and North America) when DN,,=4 (detailed
comparison under all low light thresholds in Supplementary
Fig. S5 online). The characterizing parameters of distribution a
listed in Table 1 show that the size of natural cities in Europe and
Asia are relatively more heterogeneous, in other words the
differences between big cities and small ones are quite significant
there. By contrast, two continents in the Southern Hemisphere
have the smallest exponents indicating that the size variances of
natural cities there are relatively small. As regards to allometric
scaling, Australia has an extraordinarily large exponent while the
exponents of all other continents are approximately 1.13. It is
thus strikingly illustrated that the socioeconomic scale effect is
comparatively higher in Australia. In fact, Oceania regions
(for example, Australia/New Zealand) is the most urbanized part
of the world, with 90% of its population urbanized in as early as
2000, while barely 24% were urbanized in Melanesia which is the
least urbanized region at that time (United Nations Population
Division, 2002).

In this article, we exert ourselves to exploit the potential of
nighttime light for a better understanding of city systems. The
correlation between the spatial distribution of nighttime light
and economic activity has been utilized in several studies for
estimating economic activity at the national and sub-national
levels (Doll et al., 2000; Elvidge et al., 2001; Doll et al., 2006;
Sutton et al., 2007; Henderson et al., 2012; Zhou et al., 2014). The
underlying expectation, despite the researchers’ ultimate goals in
such literature (for example, to predict or to evaluate), is largely to
improve resolution and accuracy of census statistics effectively.
To this end, nighttime light functions well as worldwide and

cross-calibrated supplementary information, which is free of any
possible interference from political interests or limitation of
national statistical system quality. However, what deserves more
attention is the new perspective on city systems provided by this
dataset, which goes beyond constraints from administrative
or official definition of urban area. And this may bridge the
gap between empirical probes into cities and mechanism
underpinning emergence and growth of cities in the real world.
In essence, process of land cover development occurs by com-
bination of isolated nucleation and intensification of previously
developed land in human history. Overall growth of city system
just follows a progression analogous to the spatial growth that
results from lowering light thresholds in the definition of natural
cities.

But it is also noteworthy that DMSP nighttime light data is
far from perfect in terms of depicting city growth, mainly due to
the problem of overglow and saturation. Although nighttime
light brightness and population density are highly correlated,
the relationship is less direct for dimmest lights detected. By
setting proper threshold, we actually determine the standard of
“urbanization” based on intensity of human activities instead of
population counts. Therefore, the low levels of light associated
with the peripheral overglow of larger settlement is not a problem
to our final end. Since these overglowing regions generally still
encompass areas with anthropogenic modification, nighttime
light can act as a suitable proxy for intensity of human activity or
level of socioeconomic development.

There are reasonable concerns that decreases of brightness
(especially regional decreases in Europe) may not be caused by
decline in human activity intensity there, but by increases in
efficiency of municipal lighting. Belgium, for example, where
almost 100% illumination of the country’s highways was indeed
able to be seen from space with a telescopic lens, switched off
lighting in the central reservations of many motorways by early
2014. Despite widespread increases in the brightness of nighttime
light across Europe over the last 15 years, there also exist
regionally significant decreases attributable to economic or
industrial decline (Bennie et al., 2014), as has been noted for
some countries of the former Soviet Union and Eastern Europe
(Elvidge et al., 2005). Improved environmental awareness can
lead to cost saving, but more prosaically, it is usually inspired by
the need of cost reduction in the first place. Though subtle, the
links between reductions of light emissions to both declines in
industry and to increased municipal lighting efficiency are still
possible to be disentangled given careful calibration based on case
studies.

This article proposes a model to simulate the growth of natural
cities and reproduce all observed properties with very encoura-
ging results. Except for the fractal dimension, all other scaling
exponents observed can be precisely generated by the model
simultaneously. This is the first time ever empirical allometric
scaling, size distribution, and fractal geometry have been obtained
from one single model. In this model, the geometric matching
mechanism is the most important one compared with other rules.
However, since the modern transportation tools have actually
twisted the geographical space of cities, the geometric matching in
the Euclidean space is not exact. It also explains why our model
generates clusters which are much more compact than real
natural cities. Therefore, the geometric matching mechanism in a
twisted space by taking into consideration the influence of ships,
planes, and land vehicles et al. will later be explored for future
studies.

Our model is no doubt a highly simplified and abstract
sketch of real cities. Many factors, such as economic, social,
and environmental ingredients are not considered. However,
the simple design in the current model enables us to introduce

|1:15017 | DOI: 10.1057/palcomms.2015.17 | www.palgrave-journals.com/palcomms 9


http://dx.doi.org/10.1057/palcomms.2015.17
http://dx.doi.org/10.1057/palcomms.2015.17
http://www.palgrave-journals.com/palcomms

ARTICLE

more realistic but complicated rules and parameters. We believe
that the extended models can ultimately be applied to city
planning in the future. However, the success of this model at
least proves that natural cities, on a macro scale, are just like
other complex systems following some ubiquitous self-
organization rules and can be adequately captured by simple
yet elegant models. In this regard, our work has made its own
contribution to the development of urban theory.
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