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Spatial distribution of disease-associated variants in
three-dimensional structures of protein complexes
A Gress1,2, V Ramensky3,4 and OV Kalinina1

Next-generation sequencing enables simultaneous analysis of hundreds of human genomes associated with a particular
phenotype, for example, a disease. These genomes naturally contain a lot of sequence variation that ranges from single-nucleotide
variants (SNVs) to large-scale structural rearrangements. In order to establish a functional connection between genotype and
disease-associated phenotypes, one needs to distinguish disease drivers from neutral passenger variants. Functional annotation
based on experimental assays is feasible only for a limited number of candidate mutations. Thus alternative computational tools are
needed. A possible approach to annotating mutations functionally is to consider their spatial location relative to functionally
relevant sites in three-dimensional (3D) structures of the harboring proteins. This is impeded by the lack of available protein 3D
structures. Complementing experimentally resolved structures with reliable computational models is an attractive alternative. We
developed a structure-based approach to characterizing comprehensive sets of non-synonymous single-nucleotide variants
(nsSNVs): associated with cancer, non-cancer diseases and putatively functionally neutral. We searched experimentally resolved
protein 3D structures for potential homology-modeling templates for proteins harboring corresponding mutations. We found such
templates for all proteins with disease-associated nsSNVs, and 51 and 66% of proteins carrying common polymorphisms and
annotated benign variants. Many mutations caused by nsSNVs can be found in protein–protein, protein–nucleic acid or protein–
ligand complexes. Correction for the number of available templates per protein reveals that protein–protein interaction interfaces
are not enriched in either cancer nsSNVs, or nsSNVs associated with non-cancer diseases. Whereas cancer-associated mutations are
enriched in DNA-binding proteins, they are rarely located directly in DNA-interacting interfaces. In contrast, mutations associated
with non-cancer diseases are in general rare in DNA-binding proteins, but enriched in DNA-interacting interfaces in these proteins.
All disease-associated nsSNVs are overrepresented in ligand-binding pockets, and nsSNVs associated with non-cancer diseases are
additionally enriched in protein core, where they probably affect overall protein stability.
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INTRODUCTION
Human genetic variation ranges from neutral polymorphisms to
disease susceptibility variants and pathogenic mutations with high
penetrance.1 A single individual may carry up to 3 × 106 single-
nucleotide variants (SNVs) and up to 3 × 105 insertions and
deletions,2 but even in disease-affected individuals only few
variants of this continuum are expected to be causal, with the rest
being neutral. Data on genetic variants that underlie certain
disease phenotypes are accumulated in specific databases, for
example, ClinVar,3 which currently contains 4160 000 unique
variant records pertaining to 27 261 genes. However, even a
strong mutation-phenotype association itself provides no insight
into the mechanistic changes to the protein function and/or
structure that are caused by the mutation. These changes can
result in protein instability or misfolding, or in perturbations of
interaction energy, if the affected protein is involved in protein–
protein, protein–nucleic acid or protein–ligand interactions.
Computational analysis of the available three-dimensional (3D)

structures of human proteins shows that disease-causing
missense (non-synonymous) mutations often result in significant
alteration of the amino-acid residue properties and disruption of

non-covalent bonding.4 In contrast, functionally neutral variants
tend to be located at the protein surface and to be less conserved
than random.5,6 Anecdotal data are available on the involvement
of disease-associated missense SNPs in protein–protein interac-
tions (PPI), reviewed in.7–9 A large-scale analysis confirms that
disease-related mutations are frequently overrepresented on PPI
interfaces.10

Several computational methods have been developed to assess
the impact of non-synonymous single-nucleotide variants
(nsSNVs) on the protein function, with SIFT11 and PolyPhen-212

being among the most commonly used ones. Some methods take
into account protein sequence-based phylogenetic information
pertaining to the mutation,11,13 others rely on the combination
of protein structural information, functional parameters and
phylogenetic information derived from multiple sequence
alignments.14–18 Specific contribution of structural parameters to
the prediction performance has been a long-discussed issue.12,17

Numerous tools have been constructed to assess potential
changes caused by SNVs in protein 3D structure: SNPeffect
database,18 for example, ignores the conservation profiles of
SNVs and relies on predicted structural features (aggregation,
amyloidogenicity, stability) and domain and catalytic site
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annotations. There are tools that predict the energetic impact of a
mutation on the stability of a protein or protein complex.19–24

A thorough comparison and discussion of limitations of these
methods can be found in references 17,25. dSysMap26 and
Mechismo27 extrapolate interactions observed in 3D structures to
interactions of homologous proteins. We have recently presented
StructMAn, a tool that allows for rapid analysis of large sets of
nsSNVs with respect to their impact on interactions of the affected
protein with other proteins, nucleic acids and low molecular-
weight ligands.28

A recent study suggests that considerations related to protein
3D structure can provide hypotheses for molecular mechanisms of
action for 40.9% of human mutations that cause inherited
diseases.29 A large collection of nsSNVs implicated in Mendelian
diseases have been experimentally tested for their effect on PPI
and two-thirds of them have been found to perturb such
interactions.7 Using our tool StructMAn, we have recently shown
that these mutations are frequently located in potentially
functionally important regions of the 3D structures of the
corresponding proteins.28

In cancer genomics, prediction of the functional impact of
genetic variants can be viewed as a search for causative 'driver'
mutations among thousands of benign somatic mutations
('passengers') detected in tumor samples and resulting from
cancer progression itself.30 Both general-purpose and dedicated
tools have been applied to study mutations in cancer, for a review
see.31 For multiple such tools, their ability to predict the effect of
cancer-associated mutations has been compared, and the
comparison revealed widely varying performance, with methods
developed specifically for cancer not outperforming general-
purpose tools.32 In an analysis of mutations in two somatic cancer
samples, one of the general-purpose tools, SNPs3D, has predicted
a majority of mutations to have a high functional impact.13 The
same tool has been recently applied to interpret potential high-
risk alleles in complex human disorders in loci identified from
GWAS studies.33 It was established that 33% of such loci contain at
least one nsSNV with a high predicted functional impact. Meta-
methods and databases that combine several prediction tools
using statistical learning have also been developed.34–36

Cancer3D37 maps nsSNVs from The Cancer Genome Atlas
(TCGA)38 and the Cancer Cell Line Encyclopedia (CCLE)39 onto 3D
structures of the corresponding proteins and annotates them with
respect to predicted cancer driver genes and drug biomarkers. In
another study, cancer-associated nsSNVs in common oncogenes
and suppressors have been mapped onto 3D protein structures,
and the corresponding amino acids have been shown to be
enriched in protein interaction interfaces, possibly disrupting
them.40 Cancer-related mutations have been also shown to form
clusters in protein interaction interfaces.41

In this study, we use StructMAn for a systematic analysis of
amino-acid residues affected by nsSNVs that are associated with
different human diseases, as well as common polymorphisms and
variants annotated as benign. To do so, we have compiled data
sets of cancer-associated nsSNVs and nsSNVs associated with non-
cancer diseases from ClinVar,3 COSMIC42 and UniProt databases,42

a set of common nsSNVs from the ExAC (Exome Aggregation
Consortium),43 and a set of nsSNVs annotated as benign in
ClinVar.3 Unlike Engin et al.,40 Cancer3D37 and Kamburov et al.,41

for the cancer-related data set we consider only mutations in
571 genes from Cancer Gene Census, an ongoing effort to
catalog those genes, for which mutations have been causally
implicated in cancer,42 to ensure high relevance of these
mutations to oncogenesis. We also extend analysis of Cancer
3D37 and Engin et al.40 by considering interactions with low
molecular-weight ligands and DNA, and that of Kamburov et al.41

by taking into account structures of homologous proteins.
The structural coverage of the human proteome is still low: 28%

of distinct genes corresponding to proteins in the UniProt human

reference proteome, as of September 2016, have an available 3D
structure resolved for at least a part of the protein sequence, but
only 8.4% have a structure that covers over 90% of the sequence
length. Considering structures of proteins that are homologous to
human proteins allows to put many more nsSNVs into structural
context. As the interactions in homologous proteins are conserved
down to relatively low sequence identity,44 the structural context
of the corresponding residues in such structures, also called
templates, is likely to be the same for human proteins affected by
nsSNVs. The selection of templates in StructMAn is performed in
such a way that they can later be used for homology modeling of
the corresponding proteins and mutations in them. It must be also
noted that we do not assess the impact of nsSNVs on the protein
overall stability, but rather focus on those that modulate specific
protein interactions.

RESULTS
Overview of the data sets
By merging variation data from various sources (see Materials and
methods for details) we were able to compile comprehensive
SNV data sets (Table 1). To the best of our knowledge, here for the
first time, we consider cancer-associated germline, and cancer-
associated somatic mutations separately, as well as mutations
associated with non-cancer diseases along with common poly-
morphisms and benign ClinVar variants. Germline cancer muta-
tions segregate in families and confer predisposition to inherited
cancer syndromes.45 They are associated with only 5–10% of all
cancers and typically act in dominant mode with high penetrance.
Somatic mutations are present only in the cancer tissues and,
compared with the germline ones, are much more numerous
and diverse (Table 1). The data set for mutations associated with
non-cancer diseases is almost four times larger than all cancer-
associated mutations taken together, and only half of the size of
the set of common variants. Cancer-associated nsSNVs, in turn, are
comparable in number to benign ClinVar variants. With the sizes
of data sets reaching tens of thousands, statistical analysis of
structural features of amino acids corresponding nsSNVs becomes
amenable. We believe these data to comprise the largest and the
most diverse data set of nsSNVs ever subjected to structural
analysis. For each of these data sets we have created a
randomized control data set, in which the identity of the genes
and the number of nsSNVs per gene were kept the same, but the
nsSNVs were randomly introduced into the nucleotide sequence.
Annotation of structural context for these disease-associated

mutations opens new possibilities for analysis of their functional
impact. While experimentally resolved 3D structures are available
only for ~ 19–73% of proteins, depending on the data set
(Table 1), our modeling procedure allows for reconstructing 3D
structures for 51–100%. More proteins from the disease-related
data sets can be characterized by structural models than in the set
of common variants, probably due to greater interest in these
genes in the scientific community. Of the whole human proteome,
32.7% of all proteins and 18.5% of all residues could be mapped to
a structural template using the same parameters.
Moreover, a large fraction of nsSNVs could be mapped

into protein–protein, protein–ligand or protein–DNA complexes
(Figure 1). The fraction of nsSNVs, for which at least one template
with a specific interaction partner can be found is in the range
70–90% and rather stable across all data sets, except for
DNA-containing complexes, which are relatively scarce, and only
correspond to ~ 20–25% of all nsSNVs in cancer-associated sets.
Somewhat fewer variants can be mapped into templates contain-
ing interaction partners for randomized data sets: the drop is two-
to fivefold, between 50 and 80% of variants for protein and ligand
interactions, and between 4.6 and 9.5% for DNA interactions.
Together with Table 1, this indicates that in the randomized data
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sets quite many variants do not map to any protein with a
resolved 3D structure, and even fewer map to complexes with
other molecules, which is in agreement with the discussion of
nsSNVs in disordered regions below.
Studied sets of mutations also differ in the chemical properties

of the substitutions calculated as the average chemical distance
and average BLOSUM62 similarity score between each wild-type
amino-acid residue and all possible mutations (Figure 2,
Supplementary Figure S1). All sets of disease-associated mutations
have a higher degree of chemical dissimilarity and median
BLOSUM62 scores below zero, indicating events that are likely to
change the chemical properties of the involved protein sites
substantially. Hereafter by 'disease-associated' nsSNVs we mean
cancer-associated nsSNVs as well as nsSNVs associated with non-
cancer diseases collectively, unless a particular set is explicitly
specified.
We have estimated the fraction of nsSNVs corresponding to

residues in disordered regions with IUPred.46 Such predictions are
based on protein sequence and thus available for variants not
necessarily mapped to 3D structure. The predicted disordered
fraction is higher among common and benign nsSNVs (30.3% and
28.2%, respectively) compared with disease-associated nsSNVs
(10.4, 9.3 and 5.4% for germline cancer-associated nsSNVs, somatic
cancer-associated nsSNVs, and nsSNVs associated with non-cancer
diseases, respectively, Supplementary Table S1). In the rando-
mized sets, between 14 and 30% of all nsSNVs are predicted to be
disordered. For nsSNVs that can be mapped onto protein 3D
structures, these values are closer: between 5.5 and 9.3% for all
data sets, which indicates that most nsSNVs in disordered regions
from the sets of common and benign variants cannot be mapped
onto experimentally resolved 3D structures, in agreement with the
natural bias of experimentally resolved structures towards
compact domains. In disease-associated sets, fewer positions are
predicted to be disordered than in the corresponding randomized
data sets, whereas for common and benign variants it is the other
way around or close to equal values. This trend is also observed
for nsSNVs mapped into resolved 3D structures.
When analyzing the distribution of the corresponding positions

in the template structures with respect to the elements of
secondary structure with DSSP47 using a majority vote over all
available template structures, we find no significant trends related
to pathogenicity of the corresponding sets: overall, between 32.5
and 43.1% of positions corresponding to nsSNVs lie in turns,
bends, coils or isolated beta-bridges, whereas between 34.7% and
43.1% in helical and between 21.3 and 26.2% in extended sheet
structures (Supplementary Table S1).

Spatial distribution of nsSNVs
We have annotated our data sets with respect to location of the
corresponding amino acid in the protein 3D structure: each nsSNV
was assigned to be either at the protein surface not contacting
another molecule, or buried in the protein core, or on a protein–
DNA, protein–protein or protein–ligand interaction interface
defined as being closer than 5 Å to the respective interaction
partner. In case when a residues lies closer than 5 Å to more than
one interaction partner of different kinds, the corresponding
nsSNV was assigned the class where the distance was lowest
(Figure 3). We found very few protein–RNA contacts, and did not
analyze this class of interactions further. When all contacts of a
residue were taken into account, the trends of the overall spatial
distribution among different data sets remain the same as for
mutually exclusive classes (Supplementary Figure S2). To ensure
statistical significance of the observations, we performed boot-
strapping by sampling with replacement each data set 1000 times.
In all cases standard deviation over 1000 samples is smaller than
difference between fractions of nsSNVs corresponding to the
same contact class across different data sets (Supplementary
Table S2).
The total number of templates with sequence identity to

the mutation-carrying protein 490% is much lower than for the
identity threshold of 35%, namely 31 012 vs 348 730. However, the
relation between the fractions of nsSNVs falling into different
classes of spatial distribution is not significantly different from that
for the complete sets (Figure 3), in line with previously reported
conservation of PPI interfaces.44 This also ensures stability of our
results with respect to the alignment quality: highly similar
templates produce high-quality alignments, and the distribution
of structural classes for such templates is qualitatively identical to
templates with alignments of varying quality. Thus aggregated
conclusions of analysis of spatial distribution of the corresponding
amino acids do not depend on the evolutionary distance to any
homologous template. Hence further we will use only the general
set with identity threshold of 35% in our analysis.
All disease-associated sets of nsSNVs have a high fraction of

mutations corresponding to amino-acid residues that contact
other molecules in protein complexes compared with the set of
common and benign variants (55.5, 49.4 and 40.0% for cancer-
associated nsSNVs germline and somatic and nsSNVs associated
with non-cancer diseases vs 32.0 and 25.8% for common and
benign variants).
Compared with all other sets, the fractions of protein–protein

contacts are high in cancer-associated data sets. This is apparently
in line with previously observed trend of cancer-associated
mutations to be overrepresented in PPI interfaces.40 However,

Table 1. Data sets in this study

Data set Source database Variants (genes) Variants (genes) with an experimentally
resolved 3D structure of the corresponding

protein (498% sequence identity)

Variants (genes) mapped onto
homologous proteins with

experimentally resolved 3D structure

Cancer germline ClinVar, Uniprot 452 (86) 360, 79.6% (58, 67.4%) 450, 99.6% (86, 100%)
Cancer germline
randomized

n/a 443± 3 (86) 268± 11, 60.5% (44± 2, 51.2%) 318± 12, 71.8% (86, 100%)

Cancer somatic ClinVar, Uniprot,
COSMIC

3673 (371) 2952, 80.4% (246, 66.3%) 3660, 99.6% (371, 100%)

Cancer somatic
randomized

n/a 3572± 8 (371) 1983± 17, 55.5% (192± 4, 51.7%) 2398± 21, 67.1% (371, 100%)

Non-cancer diseases ClinVar, Uniprot 14983 (1586) 9678, 64.6% (795, 50.1%) 14386, 96.0% (1586, 100%)
Non-cancer diseases
randomized

n/a 14431± 23 (1586) 7800± 35, 54.0% (748± 8, 47.2%) 10982± 54, 76.1% (1586, 100%)

Common ExAC 27326 (10261) 2048, 7.5% (1038, 10.1%) 6048, 22.1% (5251, 51.1%)
Common randomized n/a 27214± 11 (10261) 2425± 19, 8.9% (1260± 19, 12.3%) 7091± 57, 26.1% (5251, 51.1%)
Benign ClinVar 5186 (962) 658, 12.7% (208, 21.6%) 1166, 22.5% (634, 65.9%)
Benign randomized n/a 5134± 8 (962) 765± 21, 14.9% (239± 4, 24.8%) 1387± 18, 27.0% (634, 65.9%)
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exactly the same trend is observed for the corresponding
randomized sets, which casts doubt on the proposition that this
is a special property of cancer-associated nsSNVs. An alternative
explanation could be that genes carrying cancer-associated
nsSNVs have more PPI interfaces, which is in line with the

observation that such genes frequently act as hubs in PPI
networks.48 However, it has been previously reported that
correction for number of experimental measurements available
for a protein may render this effect insignificant.49 As structures of
cancer and other disease-associated proteins have been studied
very intensively (Table 1), we corrected for this bias by sampling
from the sets of common and benign nsSNVs those with the same
numbers of identified protein templates as in disease-associated
data sets. For such sampled sets, the proportion of nsSNVs
mapped to PPI interfaces is not significantly different from that in
the 'true' disease-associated data sets (Supplementary Table S3).
This suggests that neither disease-associated nsSNVs are enriched
in PPI interfaces, nor disease-associated proteins have more such
interfaces than proteins harboring neutral variants.
The median distances from structurally mapped nsSNVs to the

closest protein chain lie between 5 and 10 Å for all data sets,
meaning that over a half of such nsSNVs do not directly contact
them. However, the distributions of these distances are signifi-
cantly shifted towards lower values for all disease-associated
classes compared with both common and benign variants (P-value
in two-sided Wilcoxon test is 2.053e-14 for germline cancer-
associated mutations, o2.2e-16 for somatic cancer-associated
mutations, and 0.002999 for mutations associated with non-
cancer diseases compared with common variants, respectively;
for all disease-associated sets, the P-value of these distances
compared with benign variants is o2.2e-16, Supplementary
Table S4).
Disease-associated nsSNVs are enriched in ligand contacts, in

contrast to the corresponding randomized sets, which indicates
that position within the harboring protein is crucial for these
nsSNVs, apparently unlike the case of protein–protein contacts.
This effect is significant even after correction for the number of
available templates (Supplementary Table S3). Distributions of
distances to the nearest ligand are significantly shifted toward
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lower values in all sets of disease-associated mutations compared
with the common and random sets (P-values are o 2.2e-16 for all
these data sets compared with common and benign variants).
It must be noted that for this analysis we do not
distinguish between natural ligands and drug-like molecules.
A more detailed analysis of oncogenes and tumor-suppressor

genes (TSG) (see below) shows that removal of these molecules
does not qualitatively affect the results. The particular trend
to lower distances can be explained both by tendency of
disease-associated mutations to disrupt protein function by
altering a specific ligand-binding site, as well as by drug-like
molecules being designed to target sites where such mutations

All template structures
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Figure 3. Spatial distribution of nsSNVs in the analyzed data sets. For randomized data sets, mean values over 10 replicas are used. (a) For
templates with ⩾ 35% sequence identity. (b) For templates with ⩾ 90% sequence identity.
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occur (see further discussion of drug-like molecules in contact
with oncogenes and tumor-suppressor genes below).
Cancer-associated sets also have a higher fraction of mutations

corresponding to DNA-contacting residues, in agreement with the
fact that DNA repair pathways are often distorted in cancer30

(see also pathway enrichment analysis below). Compared with
the corresponding randomized data sets, all disease-associated
variants are enriched in nsSNVs in the DNA contact class,
particularly cancer-associated ones (4.5% vs 1.8% and 4.2% vs
2.1%, respectively). The common and benign variants are slightly
depleted of such nsSNVs. Whereas only 7.9% of nsSNVs associated
with non-cancer diseases map into 3D complexes with DNA
(as opposed to 25.1% in germline cancer-associated and 18.5%
in somatic cancer-associated mutation sets), the distribution of
distances to DNA is markedly shifted to lower values compared
with both cancer-associated data sets (P-values 5.721e-07 and
o2.2e-16, respectively) with a median distance of 6.58 Å
(compared with 12.03 Å for germline and 10.02 Å for somatic
mutations). These mutations are likely to alter specific interactions
with DNA. nsSNVs that can be mapped in DNA-containing
complexes from cancer-associated data sets tend to rather lie in
protein core, thus probably destabilizing it as can be exemplified
by mutations in the p53 core,50,51 or on PPI interfaces.
Interestingly, the fraction of mutations that correspond to the

residues in the protein core is lower in the sets of cancer-
associated nsSNVs than in the set of nsSNVs associated with non-
cancer diseases (26.9% for germline and 25.9% for somatic
mutations vs 42.0%), almost at the same level as among common
and benign variants (25.9% and 26.4%, respectively). In the
corresponding randomized sets this trend is supported: common
and benign variants are depleted of core nsSNVs compared with
their randomized version, and variants associated with non-cancer
diseases are enriched in such positions.

Very few mutations of disease-associated classes correspond to
residues on protein surface that do not take part in any contact
(17.6%, 24.6% and 18.0% as opposed to 40.8% of common and
47.7% of benign nsSNVs). Common and benign variants are, on
the other hand, enriched at the protein surface compared with all
disease-associated nsSNVs, but are depleted in interaction
interfaces with all kinds of investigated molecular partners, which
is supported by the corresponding randomized sets. Thus they
represent a relatively harmless type of mutation from the
structural point of view: a surface residue that is not in any kind
of functionally relevant contact can be mutated without much
consequence.

Protein complexes with multiple mutated subunits
There are several cases in our data when disease-associated
mutations can be found in multiple subunits of the same protein
complex, thus forming networks of mutated interacting proteins
(Figure 4, Supplementary Figures S3–S5). The whole network
of such complexes shows a clear preference to homooligomers
(that is, complexes of several identical protein chains)
(Supplementary Figures S3–S5), but includes some notable
examples of more complex assemblies. For example, in the
mitochondrial respiratory complex II, we find cancer-associated
germline mutations in all four subunits (Figure 4a). These
mutations are located significantly more closely to each
other than all other pairs of residues of these proteins
(P-value = 0.001567). Another example is a sub-network corre-
sponding to interactions of CDK6 with its inhibitors CDKN2A and
CDKN2C (Figure 4b), or between membrane-associated GTPases
NRas, KRas and HRas and their downstream kinase RAF1 or activity
factors SOS1 and PLCE1 (Figure 4c). In the heterodimer of PIK3CA
and PIK3R1 (Figure 4d), in which both subunits carry cancer-
associated somatic mutations, which lie also significantly more

Figure 4. Protein complexes with nsSNVs in multiple subunits. (a) Mitochondrial respiratory complex II (mapped onto a homologous complex
from porcine heart, PDB id 1ZOY) and the corresponding sub-network (see text). FAD-binding protein is shown in green, mutations therein in
pink; iron–sulfur protein is shown in cyan, mutations therein in orange; large cytochrome binding protein is shown in magenta, mutations
therein in purple; small cytochrome binding protein is shown in yellow, mutation therein in limegreen. In the sub-network, nodes correspond
to individual proteins, edges depict interactions between them. (b) Sub-network corresponding to complexes of CDK6 with its inhibitors
CDKN2A and CDKN2C. Stoichiometry of the complexes is not accounted for, and nodes with a single loop edge correspond to associations of
multiple identical subunits. (c) Sub-network corresponding to NRas, KRas and HRas and their downstream kinase RAF1 and activity factors
SOS1 and PLCE1. (d) PIK3CA-PIK3R1 complex with mutations corresponding to cancer-associated somatic nsSNVs (top) and to nsSNVs
associated with non-cancer diseases (bottom), PDB id 4L1B and the PIK3CA-PIK3R1 sub-network. PIK3CA subunit is shown in green, mutations
therein in magenta and purple. PIK3R1 subunit is shown in cyan, mutations therein in orange and red.
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closely to each other than other pairs of residues of the two
subunits (P-value o2.2e-16). The same complex, as well as
PIK3CA-PIK3R2, PIK3CD-PIK3R1 and PIK3CD-PIK3R2, carries muta-
tions associated with non-cancer diseases, which are also signifi-
cantly closer to each other than on average (P-value = 0.04133).
However, in a comparison of distances between the mutated
residues and all pairs of residues in all homo- and heterooligo-
mers, we do not observe a significant trend of disease-associated
mutations to be closer to each other than on average.

Contacts of mutated residues in oncogenes and TSG
Certain cancer-associated genes are commonly called oncogenes
or TSG, reflecting their role in disease progression.30 Using
classification from the COSMIC Cancer Census Genes, we

identified eight oncogenes and nine TSGs among proteins with
germline mutations, and 53 oncogenes and 30 TSGs among
proteins with somatic mutations. Seventy-two proteins with
germline mutations and 159 proteins with somatic mutations
cannot be attributed to either class.
The number of mutations required to unleash tumor progres-

sion has been reported to differ between the two groups of
genes,30 so we investigated mutations in them separately
(Figure 5, Supplementary Table S5). Of germline mutations, we
could map only 25 from oncogenes and 90 from TSGs into 3D
protein structures, and the corresponding values of standard
deviation in the bootstrap analysis are quite large, but for somatic
mutations, we could map 823 and 646 from oncogenes and TSGs,
respectively, and the values of standard deviation lie within 1–2%
in all contact classes (Supplementary Table S5). We observe that
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the fraction of mutations located in the protein core is higher for
TSGs than for oncogenes among the somatic mutations (24.5% vs
11.8%) and also exceeds that in the overall sets of germline and
somatic cancer-associated mutations (20.7% and 16.2%, respec-
tively). The observation is in agreement with the expectation that
somatic mutations in TSGs may implement their pathogenic effect
by 'knocking out' harboring proteins.52

For oncogenes, we observe an enrichment of protein and small-
molecule contacts, both among germline and somatic mutations.
Sixteen of 23 (69.6%) germline and 373 out of 760 (49.1%) of
somatic nsSNVs correspond to mutations that lie within 5 Å from
another protein chain, which means that they can directly
influence contact specificity and binding affinity. However, this
enrichment cannot be confirmed when the correction for the
number of available structural templates is taken into account
(cf. The discussion in 'Spatial distribution of nsSNVs' above): the
number of nsSNVs from neutral data sets residing in protein with
the same distribution of the number of templates is frequently
even larger for both germline and somatic mutations in
oncogenes and TSGs (Supplementary Table S5).
Fourteen of 25 (56.0%) of germline and 242 of 787 (30.7%) of

somatic mutations in oncogenes lie within 5 Å from a small-
molecule ligand (a single mutation can lie within 5 Å from both a
ligand and another protein chain, which introduces ambiguity into
the functional interpretation of these findings). The median
distance to the nearest ligand is higher in the general set of

somatic cancer-associated mutations (10.8 Å) than for somatic
mutations in oncogenes (8.9 Å), and there is a significant
difference between these distributions (P-value = 6.622e-06).
Low molecular-weight ligands can be found in template

complexes for almost all cancer-associated mutations in onco-
genes and TSGs (Figure 5c). Some of these ligands are specific
anticancer drugs or drug-like molecules. To investigate the
location of mutations in naturally occurring complexes, we have
excluded all ligands listed as drugs in DrugBank53 from
consideration, and the fractions of nsSNVs classified as ligand
contacts drop by one, two, and three nsSNVs for germline nsSNVs
in oncogenes, somatic nsSNVs in oncogenes and TSGs, respec-
tively. In the first two cases nsSNVs are reclassified as protein
contacts, and, in case of somatic nsSNVs in TSGs, all three nsSNVs
in SETD2 are reclassified as core mutations (these residues are in
contact with S-adenosylmethionine, which is listed in DrugBank, in
the structure of a homologous histone-lysine N-methyltransferase
NSD1, Protein Data Bank (PDB) id 3OOI). This may explain
pathogenicity of these nsSNVs in patients not previously exposed
to treatment. Additionally, we excluded all ligands bound to
tyrosine kinases ABL1, ALK, BTK, CSF1R, DDR1, EGFR and KIT, as
they represent important oncogenes targeted by new-generation
inhibitors.54 This leads to a milder effect: one somatic nsSNVs
Ala366Val in ABL1 is reclassified from ligand-contacting to core.
Interestingly, somatic mutations in oncogenes are shifted to

DNA-binding interfaces (median distance from DNA 3.59 Å putting

Table 2. Top 20 ReactomeDB pathways identified in differential analysis of disease-associated data sets compared with the set of common variants

Germline cancer-associated mutations Somatic cancer-associated mutations Mutations associated with non-cancer diseases

Regulation of TP53 activity through
phosphorylation

PIP3 activates AKT signaling Neutrophil degranulation

Ub-specific processing proteases Oxidative stress-induced senescence Intrinsic pathway of fibrin clot formation
TP53 regulates transcription of DNA
repair genes

Factors involved in megakaryocyte
development and platelet production

Glycosphingolipid metabolism

G2/M DNA damage checkpoint Oncogene-induced senescence Gap junction assembly
Recruitment and ATM-mediated
phosphorylation of repair and signaling
proteins at DNA double strand breaks

Ub-specific processing proteases Urea cycle

Factors involved in megakaryocyte
development and platelet production

Ovarian tumor domain proteases Platelet degranulation

PIP3 activates AKT signaling Regulation of TP53 degradation Oligomerization of connexins into connexons
Stabilization of p53 Regulation of TP53 activity through

Phosphorylation
Transport of connexins along the secretory
pathway

Regulation of TP53 activity through methylation Pre-NOTCH transcription and translation Galactose catabolism
Regulation of TP53 degradation Recruitment and ATM-mediated

phosphorylation of repair and signaling
proteins at DNA double strand breaks

Transport of gamma-carboxylated protein
precursors from the endoplasmic reticulum to
the Golgi apparatus

Formation of senescence-associated
heterochromatin foci (SAHF)

Association of TriC/CCT with target proteins
during biosynthesis

Removal of aminoterminal propeptides from
gamma-carboxylated proteins

Oncogene induced senescence TP53 regulates transcription of DNA repair
Genes

Gamma-carboxylation of protein precursors

Oxidative stress-induced senescence G2/M DNA damage checkpoint Extrinsic pathway of fibrin clot formation
DNA damage/telomere stress-induced
Senescence

TP53 regulates metabolic genes Common pathway of fibrin clot formation

SUMOylation of transcription factors Regulation of TP53 activity through
methylation

Striated muscle contraction

Activation of NOXA and translocation to
mitochondria

Regulation of TP53 activity through acetylation RAF/MAP kinase cascade

Regulation of TP53 activity through acetylation TP53 regulates transcription of genes involved
in Cytochrome C release

Regulation of gene expression in beta cells

Transcriptional activation of cell cycle
inhibitor p21

Stabilization of p53 Phenylalanine and tyrosine catabolism

PI5P regulates TP53 acetylation Regulation of TP53 activity through
association with co-factors

Signaling by BRAF and RAF fusions

TP53 regulates transcription of additional cell
cycle genes whose exact role in the p53
pathway remain uncertain

DNA damage/telomere stress-induced
senescence

Signaling by RAS mutants

Differences of the combined scores (see Materials and methods) for disease-associated nsSNVs and common variants are shown in parentheses.
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56.6% of all such mutations below the 5 Å contact threshold),
which is not the case either for somatic mutations in TSGs (median
distance to DNA 12.36 Å, distance distributions differ with a
P-value of 3.327e-09), nor for the general set of somatic cancer-
associated mutations (median distance 10.05 Å, P-value 4.461e-06)
(Figure 5d). Our correction for the number of available templates
also confirms that this enrichment is significant (Supplementary
Table S5). The median distance to DNA in all control data sets that
were sampled either from common or benign nsSNVs and
preserve the distribution of the number of templates for the
harboring proteins as for somatic mutations in oncogenes is
between 9.79 Å and 10.89 Å. Most of the amino acids correspond-
ing to somatic nsSNVs in oncogenes reside in domains of typical
DNA-binding folds, such as zinc fingers, basic leucine zippers or
homeodomains. Observed wild-type residues are usually char-
acteristic for these folds (for example, cysteines in zinc fingers) or
typical DNA-interacting residues such as arginine. It is plausible
that mutations of these residues are essential for maintaining DNA
contacts in all proteins with a particular fold, or in some cases,
such as Zn-binding cysteines in Zn fingers, for maintaining a fold
per se.
Fraction of nsSNVs in predicted disordered regions are

consistently lower in oncogenes and higher in TSGs, both for
germline and somatic mutations (4.8 and 4.0% in oncogenes, 16.6
and 11.5% for TSGs vs 10.4 and 9.3% for the general germline and
somatics sets, respectively). In addition, TSGs are enriched in
mutations in protein core, and both oncogenes and TSGs are
depleted of mutations on protein surface.

Pathway and GO-term enrichment analysis
For each set of disease-associated mutations, we performed
differential analysis of pathways from the Reactome Pathway
Database55 associated with the corresponding proteins (Table 2).
In this analysis we selected pathways that are overrepresented in
the set of genes affected by disease-associated nsSNVs compared
with genes with common variants. We do this by summing the
candidate scores for all nsSNVs in all genes from a particular
pathway and comparing this value to the corresponding value
calculated for common variants. This analysis summarized cellular
processes particularly affected by mutations from a certain
category. Not surprisingly, germline cancer-associated mutations
are enriched in proteins involved in DNA repair and stress
response, somatic cancer-associated mutations additionally are
enriched in signaling cascades, whereas mutations associated with
non-cancer diseases are enriched in metabolic and transport
proteins.
The top 20 GO terms enriched in the disease-associated data

sets tend to describe similar biological processes (Table 3).
Enrichment is calculated analogously to pathway enrichment for
each GO term. Cancer-associated nsSNVs are enriched in GO
terms related to cell proliferation, stress response, DNA repair,
transcription regulation, signal transduction or protein maturation.
Somatic mutations appear more frequently in proteins related to
signal transduction and not so often to DNA repair and stress
response. In contrast, mutations related to non-cancer diseases
are associated with metabolic processes and transmembrane
transport.

Table 3. GO-term enrichment analysis: top 20 terms in the 'Process' category

Germline cancer-associated mutations Somatic cancer-associated mutations Mutations associated with non-cancer
diseases

Positive regulation of transcription, DNA-templated Negative regulation of cell proliferation Positive regulation of transcription,
DNA-templated

Negative regulation of cell proliferation Positive regulation of transcription,
DNA-templated

Cell–cell signaling

Negative regulation of transcription from RNA polymerase
II promoter

Negative regulation of transcription from
RNA polymerase II promoter

Response to drug

Negative regulation of apoptotic process Negative regulation of apoptotic process Blood coagulation
Regulation of transcription, DNA-templated Positive regulation of transcription from

RNA polymerase II promoter
Positive regulation of transcription from
RNA polymerase II promoter

Cell proliferation Regulation of transcription, DNA-
templated

Transport

Positive regulation of gene expression Ras protein signal transduction Positive regulation of gene expression
Positive regulation of transcription from RNA polymerase II
promoter

Positive regulation of gene expression Visual perception

Regulation of signal transduction by p53 class mediator Negative regulation of transcription,
DNA-templated

Signal transduction

Cellular response to DNA damage stimulus Cell proliferation Negative regulation of neuron apoptotic
process

DNA damage response, signal transduction by p53 class
mediator resulting in transcription of p21 class mediator

Negative regulation of cell growth Negative regulation of apoptotic process

Intrinsic apoptotic signaling pathway in response to DNA
damage by p53 class mediator

Cell cycle arrest Nervous system development

Ras protein signal transduction Viral process Negative regulation of transcription from
RNA polymerase II promoter

Regulation of apoptotic process Cellular response to drug Liver development
Cellular response to drug Cellular response to DNA damage

stimulus
Sensory perception of sound

Cell differentiation Positive regulation of apoptotic process ER to Golgi vesicle-mediated transport
Response to X-ray Replicative senescence Positive regulation of cell proliferation
Negative regulation of transcription, DNA-templated Cell differentiation Response to hypoxia
Cell cycle arrest Regulation of apoptotic process Response to estradiol
Negative regulation of cell growth Regulation of signal transduction by p53

class mediator
Transcription, DNA-templated

Differences of the combined scores (see Materials and methods) for disease-associated nsSNVs and common variants are shown in parentheses.
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Vogelstein et al.30 have recently presented a brilliant analysis of
pathways accounting for major cancer driver genes and selected
12 key pathways, which largely overlap with the lists above.
Vogelstein et al.30 point out that mutations in growth factor-
related signaling pathways often enable cells to proliferate in
conditions of limited nutrient concentration, typical for tumors. On
the other hand, mutations in proteins controlling DNA damage are
also frequently observed among cancer drivers, which allows to
acquire secondary mutations with an increased rate. We observe
that proteins of regulatory cascades are enriched with somatic,
whereas proteins involved in DNA repair more frequently harbor
germline mutations.

Prediction of mechanisms of disease-associated mutations
Cancer-related malignancy often progresses through gain or loss
of function of particular genes. However, it has recently been
shown that alteration of gene activity can contribute to cancer
progress in at least 5% of all cases.56 PMD (Protein Mutant
Database)57 is a literature-based collection of data on how
mutations in proteins alter their activity. For 821 disease-
associated nsSNV also described in PMD, we were able to find a
mapping into a potentially homologous 3D structure in this study.
Of the 821 disease-associated nsSNVs described in PMD, 63 are
germline cancer-associated, 107 are somatic cancer-associated
and 651 are associated with non-cancer diseases. In contrast, only
nine common nsSNVs and one benign nsSNV are annotated as
altering protein function in PMD. This is in agreement with the
expectation that common and benign variants do not have
significant impact on phenotype.
A simple example of functional prediction produced by our

method is the case of VHL (Von Hippel-Lindau disease tumor
suppressor) gene. This gene harbors many mutations that lead to
cancer, either somatic or germline (Leu155Pro, Cys162Phe,
Arg167Gln, Leu188Val), which can be mapped to interaction
interface with transcription elongation factor EloC (PDB id 4AJY).
Other cancer-associated mutations (Asn78Ser, Tyr98His) are found
on the interaction interface with a peptide of Hypoxia-inducible
factor 1-alpha (HIF1alpha). Experimental data suggest that these
mutations abolish the ability of VHL to bind EloC and regulate
HIF1alpha.58,59

In many cases, altered affinity to natural substrates and
inhibitors can be explained by direct interaction with the
corresponding low molecular-weight ligand. A well-known exam-
ple of altered enzyme specificity is IDH1, in which mutating
Arg132 changes the reaction from converting isocitrate to alpha-
ketoglutarate to converting alpha-ketoglutarate to R(− )-2-hydro-
xyglutarate, which leads to glioma.60 This residue is 3.18 Å apart
from alpha-ketoglutarate (PDB id 4L06). In other cases, structural
analysis explains resistance to inhibitors. For example, decreased
affinity of Abl1 to imatinib upon mutations Thr315Ile, Tyr253His61

can be explained by a tight contact with imatinib analog in a 3D
structure of a complex (PDB id 2G1T). In HRas, an oncogenic
mutation Gly12Asp that hinder formation of the transition state
complex with a GTPase-activating protein62 can be found in
contact with GTP in a 3D structure of HRas:GTP complex (PDB id
4K81). Analogously, Ala59Thr and Gln61Leu are in contact with
GTP in a complex with PDB id 2UZI.
In androgen receptor (AR), many mutations are associated with

androgen insensitivity syndrome, which leads to malformation of
genitalia both in male and female. Most of these mutations are
found to be in contact with androgen or its analog in one of many
experimentally resolved 3D structures of AR. However, Arg840Cys
and Ile869Met63 are distant from the ligand in these structures,
and only homologous residues Gly698 and Glu727 can be found in
contact with a larger prodrug ligand in glucocorticoid receptor
(PDB id 4UDD, sequence identity 50%). These contacts may

represent alternative interactions in a different conformation, for
example, during ligand binding or dissociation.
Experimentally resolved 3D structures of oncogenes may also

fail to explain specific modes of action of mutations. For example,
in Ret tyrosine kinase, the Leu790Phe germline mutation is located
in the vicinity of the inhibitor binding pocket. In 3D structures of
Ret co-crystallized with various inhibitors, the distances between
the mutated residue and the inhibitor are at least 5.88 Å. However,
in a 3D structure of a homologous tyrosine kinase SYK with an
inhibitor (PDB id 3TUC), distance between the corresponding
residue Met435 and the inhibitor is 3.58 Å. In other cases
one needs to consider homologous complexes. The complex of
cyclin-dependent kinase CDK4 with its inhibitor D has not been
experimentally resolved, CDK4 inhibitor D has been co-crystallized
with CKD6 (PDB id 1BI8), which shares 65% identity with CDK4. In
this structure, a germline mutation Arg24His in CDK4 corresponds
to Arg31, which is only 2.73 Å away from the contacting protein.
Mutations in DNA-binding proteins can often be mapped to

protein–DNA interaction interfaces, in many cases with the help of
3D structures of homologs. We observe homology over large
evolutionary distances, due to high conservation of typical
DNA-binding folds. For example, in homeobox protein HESX-1 a
mutation Arg160Cys is associated with septooptic dysplasia and
phenotypically results in the loss of DNA binding.64 A complex of
HESX-1 with DNA is not experimentally resolved, but HESX-1
sequence is 52% identical to homeobox protein aristaless from
Drosophila melanogaster that is also involved in morphogenesis. In
a complex of aristaless with DNA (PDB id 3LNQ) the corresponding
residue Arg137 is located 2.80 Å apart from DNA interacting with a
backbone sugar in the major groove. In another case, in pituitary-
specific positive transcription factor 1, which also does not have
an experimentally resolved 3D structure, a mutation Glu174Gly is
involved in combined pituitary hormone deficiency. It can be
mapped into a complex of the rat ortholog Pou1f1 (84% identity)
with DNA, where the corresponding Glu174 is 4.48 Å away from
the DNA.
Another interesting case is presented by Arg882His mutation in

DNMT3A, a DNA methyltransferase, which is associated with acute
myeloid leukemia, and has been shown to impair formation of
active homotetramers by forming stable inactive heterodimers
that involve one wild-type and one mutated subunit.65 The
mutation is annotated as potential intersubunit contact in our
analysis based on a 3D structure of DNMT3A-DNMT3L complex
with histone H3 (PDB id 4U7T). Hence, function of Arg882His in
formation of homotereamers is unclear from these data. However,
structural superimposition of this complex with HhaI-DNA
complex (PDB id 1MHT), which lacks detectable sequence
similarity between the structurally similar subunits, places this
mutation on the DNA-binding interface as well. This presents an
alternative scenario, in which Arg882His interferes with DNA
binding and thus renders the heterodimer complex inactive. This
latter observation also suggests an extension of our procedure, in
which not only sequence homology, but also structural similarity
can be taken into account.

DISCUSSION
Using the recently developed tool StructMAn,28 we have analyzed
the spatial distribution of pathogenic nsSNVs in protein 3D
structures. Particularly, we have considered cancer-associated
nsSNVs, distinguishing between germline and somatic mutations,
nsSNVs associated with non-cancer diseases, as well as common
and benign variants. We considered their location with respect to
protein surface or core, and various interacting molecules, namely
other proteins, low molecular-weight ligands, and DNA. Taking
into account 3D structures of homologous proteins considerably
expands the spectrum of mutations amenable for this analysis,
whereas preserving the qualitative characteristics of the structural
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data set. This provides a statistically powerful overview of the
trends of disease-associated nsSNVs to be spatially localized to
certain protein regions.
Cancer-associated nsSNVs tend to be enriched in protein–

protein interaction interfaces as has been previously shown for
different sets of cancer-associated mutations.40,41 However, we
show that random mutations in the same proteins exhibit the
same pattern. We hypothesized that this enrichment can be
explained by the properties of the harbouring proteins that tend
to have more PPI interfaces and act as hubs of PPI networks.48

However, correction for the bias introduced by the number of
available templates for a nsSNV suggests that this is not the case
either, in line with previously observed artifacts in protein–protein
interaction networks.49 Thus, our analysis does not confirm
that disease-associated nsSNVs are specifically targeted to
protein–protein interaction interfaces.
We show that cancer-associated nsSNVs, although enriched in

DNA-binding proteins, are rarely located in the DNA-binding
interface itself, and thus likely do not disrupt, but rather modulate
interaction with DNA or the stability of the DNA-binding domain.
In contrast, nsSNVs associated with non-cancer diseases, in those
relatively rare cases when they occur in DNA-binding proteins,
tend to localize in DNA-binding interfaces directly. NsSNVs
associated with non-cancer diseases are also enriched in protein
core, where they probably affect protein overall stability. The
common variants are significantly depleted from all interaction
interfaces, as shown by comparison with randomly selected
amino-acid residues in the same proteins. Among cancer-
associated nsSNVs there is a significant difference between
mutations located in oncogenes and TSG: the former tend to
localize in protein-ligand-binding sites, whereas the latter do not
have a tendency to be located in these sites.
To put our analysis into the wider context of the research field,

we compared our structural annotations to predictions of various
tools that assess functional impact of genetic variants. Annovar66

is a convenient software framework implementing many
such tools, including SIFT,11 PolyPhen-2,12 FATHMM,67 LRT,68

MutationTaster,69 MutationAssessor,70 PROVEAN,71 MetaSVM72

and MetaLR.73 These tools provide a classification of variants into
two or more classes, of which some correspond to potentially
deleterious variants and some are benign. We have applied
Annovar to nsSNVs in the original non-randomized data sets and
compared structural classes to functional annotations
(Supplementary Table S6). We were able to collect enough
annotations to allow for statistical analysis only for somatic cancer-
associated and for common variants. For all annotation tools,
cancer-associated nsSNVs are annotated as deleterious signifi-
cantly more often than common variants (P-value in Fisher's exact
test o2.2e-16).
In addition, we compared annotations within different structural

classes. In most cases protein, ligand and DNA contacts, as well as
core nsSNVs, are enriched with potentially damaging variants
(Supplementary Table S6). This enrichment is statistically sig-
nificant (P-value in Fisher's exact test o0.05) in all but one cases
among cancer-associated somatic nsSNVs. In a similar comparison
for common variants, contacts and core mutations are significantly
enriched with predicted deleterious variants in 32 of 44 cases.
Thus, we show that our structural annotations not only agree well
with predictions of other common tools, but also extend them by
suggesting a mechanistic explanation of the observed phenotype
for with disease-associated nsSNVs.
To our knowledge, this study is the most comprehensive to date

in an emerging field at the confluence of oncogenomics and
structural bioinformatics. Structural comparison presented here
provides a new angle at the long-standing problem of the
functional characterizations of genetic variations.

MATERIALS AND METHODS
Data sets of nsSNVs
We used the Uniprot,74 ClinVar3 and COSMIC42 databases to construct the
data sets of disease-associated mutations used in this study. In Uniprot,
human disease mutations are listed in the 'humsavar.txt' file (ftp.uniprot.
org). Cancer-related mutations are selected based on specific keywords in
the field describing effects of natural variants or known cancer syndromes
in disease acronyms. Variant effect description and origin for cancer
variants (somatic or germline) have been parsed from UniProt XML file
'uniprot_sprot.xml.gz'. For ClinVar, 'Pathogenic' or 'Likely pathogenic' (but
not 'Benign') nsSNVs were extracted and separated into cancer-related and
non-cancer disease mutations using the NCBI MedGen disease classifica-
tion. Cancer variants were classified as somatic or germline based on the
'Origin' field in ClinVar. From all the variants found in COSMIC Cancer
Census genes, another source of somatic cancer missense mutations, we
included only variants observed in at least two cancer samples in order to
enrich them with potentially functional 'drivers'. Gene information
(oncogene or suppressor and so on) was extracted from the 'cancer_gen-
e_census.csv' file. Common missense variants were selected from ExAC 0.3.
143 based on the condition that alternative allele frequency is ⩾5% in at
least one ExAC population. We assume these variants are common, and
thus not associated with any detrimental phenotype. As another set of
functionally neutral variants, we constructed a set of nsSNVs from ClinVar
that are annotated as 'Benign'. All nsSNVs present in a neutral data set and
a disease-associated data set were removed from the disease-associated
data set (we observed only 151 such cases). In addition, we have
considered ClinVar nsSNVs with different review status, and found no
difference in the spatial distribution of such variants, provided that the size
of the subset is comparable with the size of the original set
(Supplementary Figure S6).
We created a randomized control data set corresponding to each of

the disease-associated and neutral sets described above by taking the
genes from these data sets and introducing the same number of nsSNVs in
them at random positions in the nucleotide sequence. These data sets
represent artificial random mutations without considering natural
repair mechanisms or possible evolutionary consequences of potential
damage introduced by the mutations, and therefore are likely to exhibit a
different spatial distribution from the biological data sets. The
resulting non-redundant and non-overlapping data sets are described in
the Table 1.

Template recognition
In order to perform structural annotation of entire mutation data sets, we
search for all available 3D structures of proteins from these sets, as well as
of their homologs (templates) with the StructMAn pipeline.28 This tool
takes a list of gene identifiers and amino-acid replacements as input. Then
for each gene, its amino-acid sequence from UniProt74 is searched against
all proteins with resolved 3D structures from the PDB75 with BLAST76

(e-value o10− 5, alignment coverage 450% of shorter protein length or
longer than 50 amino-acid residues, sequence identity 4 35%). The
sequence of the correct isoform is always used when this information is
available. In other cases, the canonical isoform as defined in UniProt is
used. nsSNVs are mapped onto the sequences of the templates using a
global pairwise alignment algorithm from the EMBOSS package.77 If a
mutation is mapped to a gap, the corresponding template is discarded. For
each PDB entry from the resulting list of templates, a template score is
calculated based on the following four attributes: (1) sequence identity,
(2) alignment coverage, (3) resolution and (4) R factor.28 When multiple
templates were available for a single nsSNV, all templates were considered
to ensure its fullest possible structural annotation.

Structural annotations of nsSNVs
Structural analysis has been performed for each template, even if an
experimental 3D structure of the target protein is available, in order to
collect as much relevant information, such as positions of macromolecular
interaction partners and ligands, as possible. We compute (1) the shortest
distance of the mutated residue to a ligand, (2) the shortest distance to any
other macromolecule and (3) the relative surface accessibility of the
substituted residue using NACCESS.78 A combination of these factors with
the corresponding template score produces the final candidate score,
which reflects the similarity between the sequences of the template
structure and the corresponding human protein, the structural quality of
the template, as well as the propensity of the mutated amino-acid residue
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to be located in a potentially functionally important region of the structure:

IS ¼ seq id þ 0:5 � cov þ 0:25 � resþ 0:1 � rð Þ=1:85ð Þ
� lig cont þ chain contð Þ=2ð Þ;

where IS is the interaction score, seq_id is sequence identity between
template and target, cov is the target coverage by the alignment to the
template, res = 1/(1+exp(1.5*resolution–4)), r is 1− R-value, lig_cont=
1/(1+exp(SLD− 10)), chain_cont=1/(1+exp(SCD− 10)), SLD is the shortest
distance between the substituted residue and a ligand, SCD is the shortest
distance between the substituted residue and any other macromolecule.
For more details, see.28

Pathway and GO-term enrichment analysis
To facilitate the pathway and GO-term enrichment analysis, we
constructed a combined protein-level score as the maximal sum over all
templates of the candidate scores for all mutations in that protein
normalized such that proteins containing a small number of high-scoring
candidate mutations receive a higher combined score than proteins
containing multiple low-scoring candidate mutations (see more details in
reference 28). All protein scores corresponding to a certain pathway in the
Reactome Pathway Database55 or to a certain GO term were summed,
normalized by the number of corresponding proteins, and compared
between disease-associated data sets and sets of neutral variants. For each
pathway and GO term overlapping between a disease-associated set and a
set of neutral variants, we subtract the two corresponding scores to obtain
differential scores. High differential scores indicate enrichment in nsSNVs
with probably high impact on protein interactions for this pathway or
GO term.
Top 20 pathways and GO terms for each comparative analysis are given

in Tables 2 and 3. We performed the same comparative analysis using the
randomized data sets instead of the set of common variants. These
randomized sets were created by choosing 10 000 random human genes
and inserting in them a number of mutations sampled from the
distribution of the number of nsSNVs per gene for all biological data sets.
The number of nsSNVs per gene was not found to correlate with gene
length in the biological data, so we did not account to gene length in this
sampling. We found the results of the pathway and GO-term enrichment
analysis in this setting to be highly similar to the data obtained in
comparison with common nsSNVs (Supplementary Table S7). This
indicates, that the pathways and GO terms enriched in structurally
impactful nsSNVs are not an artifact of the skewed distribution of proteins
in the input data sets.

Definition of structural classes and chemical properties of mutated
residues
We have also defined five non-overlapping structural classes: 'Surface',
'Core', 'DNA contacts', 'Ligand contacts' and 'Protein contacts'. To assign an
nsSNV to a structural class, we first calculated distances to the nearest
protein and DNA chains and to low molecular-weight ligands. To define
low molecular-weight ligands, we considered all HETATM records in PDB
files, excluding modified amino-acid residues, and manually removed all
common crystallographic buffer components. Metal ions were kept, as
they often play an important functional role, and mutations affecting their
binding may have a severe effect. The shortest distance among distances
to all interaction partners was chosen, and if it was lower than 5 Å, the
nsSNV was assigned to the corresponding contact structural class. If no
contacting molecule was found within 5 Å, we calculated the solvent
accessible area of the corresponding amino-acid residue with NACCESS.78

If it was below 16%, the nsSNV was assigned to the class 'Core',79 otherwise
the nsSNV was assigned to the class 'Surface'.
To measure the difference of chemical properties for each pair of wild-

type and mutated amino-acid residues, we used a vector of five numerical
descriptors80 to represent all 237 physical–chemical properties of amino-
acid residues from,81 and calculated Euclidean distances between the end
points of these vectors. Alternatively, we calculated chemical distances
as corresponding values of the Blosum62 substitution matrix.82 When
multiple mutations were observed for a position, we computed the
average over all observed mutations.

PPI networks
To identify protein complexes containing mutations in different subunits
we constructed PPI networks. We considered two proteins interacting,

if they are mapped to subunits in at least one template structure. In order
to reduce the number of false-positive complexes we allowed only
templates with sequence identity above 90%. We display only mutated
subunits (Supplementary Figures S3–S5), whereas the complexes may
contain additional subunits without mutations. Complexes with only one
mutated subunit are not shown in the network.
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