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The SMAC mimetic, LCL-161, reduces survival in aggressive
MYC-driven lymphoma while promoting susceptibility to
endotoxic shock
AC West1,2,3, BP Martin1, DA Andrews4, SJ Hogg1,5, A Banerjee2,6, G Grigoriadis2,7,8,9, RW Johnstone1,5,10 and J Shortt1,5,8,9,10

Inhibitor of apoptosis proteins (IAPs) antagonize caspase activation and regulate death receptor signaling cascades. LCL-161 is a
small molecule second mitochondrial activator of caspase (SMAC) mimetic, which both disengages IAPs from caspases and induces
proteasomal degradation of cIAP-1 and -2, resulting in altered signaling through the NFκB pathway, enhanced TNF production and
sensitization to apoptosis mediated by the extrinsic pathway. SMAC mimetics are undergoing clinical evaluation in a range of
hematological malignancies. Burkitt-like lymphomas are hallmarked by a low apoptotic threshold, conveying sensitivity to a range
of apoptosis-inducing stimuli. While evaluating LCL-161 in the Eμ-Myc model of aggressive Burkitt-like lymphoma, we noted
unexpected resistance to apoptosis induction despite ‘on-target’ IAP degradation and NFκB activation. Moreover, LCL-161
treatment of lymphoma-bearing mice resulted in apparent disease acceleration concurrent to augmented inflammatory
cytokine-release in the same animals. Indiscriminate exposure of lymphoma patients to SMAC mimetics may therefore be
detrimental due to both unanticipated prolymphoma effects and increased susceptibility to endotoxic shock.
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INTRODUCTION
Inhibitor of apoptosis proteins (IAPs) (X-linked IAP, cIAP1 and
cIAP2) possess baculoviral IAP repeat (BIR) domains that
mediate binding to post-mitochondrial caspases.1 Mitochondrial
permeabilization releases second mitochondrial activator of
caspases (SMAC), which competes for BIR occupancy on IAPs to
augment apoptosis induction. Accordingly, the initial basis for
development of small molecule SMAC mimetics as antineoplastics
was as simple proapoptotic agents. It was subsequently demon-
strated that IAP antagonists induce proteasomal degradation of
cIAP1 and cIAP2, enhancing both canonical and noncanonical
NFκB signaling downstream of tumor necrosis factor (TNF) family
receptors concurrent to the initiation of autocrine death receptor
(DR) signaling.2,3 Susceptible cell lines are exquisitely sensitive to
IAP antagonists due to feedback amplification of the extrinsic
apoptotic pathway, mediated primarily by TNFα.
LCL-161 (Novartis, Basel, Switzerland) is an orally available IAP

antagonist with preclinical activity as a single agent demonstrated
in multiple myeloma,4 glioblastoma5 and sarcoma.5,6 In the
absence of single-agent activity, LCL-161 sensitizes to apoptosis
induction by chemotherapy or BCL-2 inhibition in hepatocellular
carcinoma7,8 and radiotherapy in esophageal carcinoma.9

Synergistic activation of the extrinsic apoptotic pathway was also
demonstrated by combining LCL-161 with adenovirally-vectored

TNFα in melanoma.10 The results of a phase I dose escalation
study were recently reported.11 Despite biomarkers on in vivo
cIAP1 degradation and cytokine release at well-tolerated doses,
no objective responses were observed in the solid organ tumor
setting. However, clinical trials with LCL-161 and other SMAC
mimetics are ongoing, including in hematological malignancies
such as multiple myeloma and acute myeloid leukemia.
Lymphomas driven by the cMYC oncogene are remarkable for

high rates of basal proliferation and apoptosis. cIAP1 potentiates
MYC activity, by ubiquitinating its negative regulator, MXD1.12

We therefore hypothesized that LCL-161 would show potent
activity in the Eμ-Myc model of aggressive lymphoma, which is
sensitive to a range of novel apoptosis-inducing stimuli.13–16

Unexpectedly, Eμ-Myc lymphomas were highly resistant to
LCL-161-induced apoptosis in vitro, despite engagement of IAP
degradation and NFκB activation at ‘on-target’ concentrations.
Moreover, LCL-161 did not sensitize Eμ-Myc lymphomas to death-
receptor-induced apoptosis. Interestingly, LCL-161 treatment of
lymphoma-bearing mice accelerated disease progression culmi-
nating in a survival disadvantage compared with vehicle-treated
controls. Analogous to the cytokine release syndrome (CRS)
encountered in human trials,11 LCL-161 markedly exacerbated
inflammatory cytokine-release following lipopolysaccharide (LPS)
challenge. Thus, LCL-161 accelerates Eμ-Myc lymphoma and
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predisposes to septic shock in vivo. These findings mandate
caution during the clinical evaluation of SMAC mimetics when
used as single agents in hematological malignancies.

RESULTS AND DISCUSSION
LCL-161 induces cIAP1 degradation and NFκB activity in Eμ-Myc
lymphoma
IAP antagonists reportedly induce proteasomal degradation of
cIAP1 and cIAP2, enhancing both canonical and noncanonical
NFκB signaling downstream of TNF family receptors concurrent to
the initiation of autocrine DR signaling.2,3 We first investigated the
capacity of LCL-161 to induce cIAP1 degradation in vitro. cIAP1
was readily degraded in three independently-derived Eμ-Myc
lymphomas following the 24 h LCL-161 treatment at low
concentrations (0.2–2 μM). Similar levels of cIAP1 degradation
were observed in human breast cancer cells (MDA-MB-231) and
mouse embryo fibroblasts (MEF; Figure 1a). Next, we investigated
whether cIAP1 degradation induced downstream NFκB activation
in Eμ-Myc cells. Upon treatment with LCL-161 or stimulation with
TNFα, the NFκB subunit p65 was phosphorylated in Eμ-Myc
lymphomas (Figure 1b). Similar phosphorylation of p65 in
response to LCL-161 was observed in additional nonhematopoie-
tic cancer cell lines (MDA-MB-231 and HT1080), even though these
were relatively insensitive to TNFα stimulation (Figure 1b). Thus,
Eμ-Myc lymphoma exhibited degradation of cIAP1 and NFκB
pathway activation in response to LCL-161 in vitro.

Eμ-Myc lymphoma is resistant to apoptosis induction by LCL-161
Similar to human MYC-driven lymphomas, Eμ-Myc lymphoma is
sensitive to apoptosis induction by a range of novel and
conventional therapeutics.13–16 We therefore expected IAP degra-
dation to correlate with a potent apoptotic response following
the LCL-161 treatment. However, despite biochemical evidence of
LCL-161-mediated cIAP1 degradation (Figure 1a), Eμ-Myc
lymphoma cells were resistant to apoptosis induction by
LCL-161 at corresponding concentrations and even with a
100-fold dose escalation (Figure 2a).

Apoptosis induction by IAP antagonists is primarily mediated by
autocrine DR signaling via TNFα.2,3 We therefore assessed the
capacity of Eμ-Myc lymphoma cells to either secrete or respond to
TNFα in response to LCL-161. TNFα was not detected upon
assessment of the supernatant of LCL-161-treated Eμ-Myc cells by
cytokine bead array (data not shown). However, exogenous
TNFα induced p65 phosphorylation indicating intact TNF receptor
activity (Figure 1b). We therefore assessed the capacity for
LCL-161 to augment an apoptotic response to exogenous TNFα.
Eμ-Myc cells were treated with LCL-161 in the presence of
increasing TNFα concentrations (Figure 2b). Neither TNFα alone,
nor the addition of TNFα to LCL-161 resulted in apoptosis of
Eμ-Myc lymphoma cells, despite robust apoptosis induction in the
MDA-MB-231 (LCL-161-sensitive control) line treated concurrently
(Figure 2b).

Eμ-Myc lymphoma is resistant to apoptosis induction by DR
agonists
Given the lack of TNFα-induced cell death in Eμ-Myc cells, we next
sought to determine if Eμ-Myc cells were capable of undergoing
apoptosis in response to direct stimulation of the extrinsic
apoptosis pathway. Surface expression of DR-5 was detected on
Eμ-Myc lymphoma cells, albeit in low levels (Figure 2c). However,
Eμ-Myc lymphoma cells were resistant to the DR-5 agonistic
antibody, MD5.1, administered alone or in combination with
LCL-161 (Figure 2d). In contrast, MD5.1 readily induced apoptosis
in the 4T1.2 murine breast cancer cell line. Together these data
suggest Eμ-Myc lymphoma is resistant to LCL-161, despite cIAP1
degradation and NFκB engagement due to insensitivity to
extrinsic apoptotic stimuli, and a subsequent failure to engage
autocrine DR signaling described in other models.2,3

LCL-161 reduces the survival of mice bearing Eμ-Myc lymphoma
The absence of an in vitro apoptotic response to LCL-161 does not
necessarily preclude in vivo activity. For example, non-tumor cell
autonomous mechanisms of action including paracrine signaling,
microenvironmental changes and the host immune response may
be important mediators of therapeutic responses in the absence
of direct apoptosis induction. Indeed, we have previously
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Figure 1. LCL-161 induces cIAP degradation and NFκB at on-target concentrations in vitro. (a) C57Bl/6-derived Eμ-Myc lymphomas (107, 4242
and 6066 derived and maintained as described previously13) as well as MDA-MB-231 and MEF control cells (cultured in DMEM with 10%
heat-inactivated fetal calf serum (FCS), 2 mM L-glutamine and penicillin (100 U/ml)/streptomycin (100 μg/ml; all Gibco, ThermoFisher Scientific,
Waltham, MA, USA at 37 °C and 5% CO2) were treated with increasing doses of LCL-161 (0.2 or 2 μM for 24 h; kindly provided by Novartis) or
vehicle control. cIAP1 expression was assessed on protein lysates by western blot using standard techniques and antibodies against cIAP1
(#4952; Cell Signaling Technology, Danvers, MA, USA) and actin (#A2228; Sigma-Aldrich, St Louis, MO, USA) to confirm equivalent loading.
(b) Eμ-Myc (4242 and 107) lymphomas, MDA-MB-231 and HT1080 cells were treated with LCL-161 (2 μM) and/or TNFα (2.5 ng/ml; R&D
Biosystems, Minneapolis, MN, USA) for 2 h, and NFκB activation assessed by western blotting using antibodies against phosphorylated
(Ser536) p65 (93H1 #3033; Cell Signaling Technology), total p65 (#ab7970; Abcam, Cambridge, UK) and then reprobed for tubulin (#T5326;
Sigma-Aldrich) to confirm equivalent loading. Images shown are representative of three biological replicates.
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demonstrated that an intact host immune system is required for
optimal responses to other novel antilymphoma agents in vivo.17

We therefore assessed the response of the same lymphomas
(presented in Figure 1) in an in vivo syngeneic transplant setting,
utilizing immunocompetent wild-type C57Bl/6 mice. Although
we did not necessarily anticipate efficacy (given our in vitro
findings), unexpectedly worse outcomes were demonstrated for
LCL-161-treated mice compared with vehicle controls in the
majority of experiments performed (Figure 3a). We observed a
reduction in the median survival of mice transplanted with two
independently-derived lymphomas (107 and 6066) and treated

with LCL-161 (Figure 3a). Either no significant benefit, or a
reduction in survival was observed with the third lymphoma
(4242) in independent experiments. Premature death was
attributable to progressive lymphoma, rather than drug toxicity,
as evidenced by equivalent tumor burden (spleen weight)
observed in LCL-161-treated mice at end point compared with
vehicle-treated mice when they succumbed to lymphoma
(Figure 3b). Furthermore, an increased proportion of lymphoma
cells in leukemic phase (Figure 3c) and subtly increased
lymphoma burden by luciferase reporter imaging was observed
in LCL-161-treated mice during treatment (Figure 3d). Thus,
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Figure 2. Eμ-Myc lymphomas are refractory to apoptosis via LCL-161 and the extrinsic apoptosis pathway. (a) Eμ-Myc lymphomas (4242 and
107; 1− 10× 105) were treated with LCL-161 (0.2, 2 or 20 μM) or vehicle control (− ) and assessed for apoptosis by flow cytometry at 24 and 48 h
using Annexin-V (#17-8007; eBiosciences, San Diego, CA, USA) and viability dye (Fluoro-Gold; Fluorochrome, LLC, Denver, CO, USA) staining.
(b) Eμ-Myc lymphomas (4242 and 107) and MDA-MB-231 cells (MDA) were treated with LCL-161 or vehicle control (as per a) in the presence of
increasing doses of TNFα and assessed for apoptosis by flow cytometry after 24 or 48 h using Annexin-V and viability dye staining as
described in a. (c) The surface expression of DR-5 on live Eμ-Myc 4242 cells was assessed by flow cytometry using an anti-DR-5 antibody
(MD5-1; #119905; BioLegend, San Diego, CA, USA) or isotype control (HTK888; 400907; BioLegend) and viability dye staining. (d) Eμ-Myc 4242
(left panel) or 4T1.2 (right panel) cells were treated with plate-bound (8-well Protein A-coated strips; ThermoFisher, Waltham, MA, USA) MD5.1
at the concentrations indicated or isotype control (10 μM; UC8-1B9; both prepared as previously described)31 alone or in combination with
LCL-161 (2 μM). Apoptosis was assessed after 24 h treatment by flow cytometry using Annexin-V and viability dye staining as described in a.
Error bars represent the mean± s.e.m. of at least three independent experiments.
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LCL-161 treatment can accelerate the progression of Eμ-Myc
lymphomas in vivo resulting in reduced survival in lymphoma-
bearing mice.
cIAP1 and 2 have previously been implicated as tumor

suppressors for human B-cell malignancies,18,19 and deletion of
these genes was shown to promote B-cell survival in the absence
of BAFF-R signaling.18 Cooperation between MYC and NFκB is also
well described in lymphomagenesis20 and constitutive NFκB

activity is a known driver of mature B-cell malignancies where
‘oncogenic addiction’ to NFκB has been reported.21–23 Thus, we
posit that LCL-161-mediated degradation of cIAP1 and 2 in the
absence of an extrinsic apoptotic response may induce B-cell
survival signals including NFκB activation, thus supporting Eμ-Myc
lymphoma progression in vivo, although the suppression of
MYC-driven lymphomagenesis by NFκB activation has also been
described.24,25
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Figure 3. LCL-161 accelerates the progression of Eμ-Myc lymphoma in vivo. (a) Eμ-Myc lymphoma cells were endowed with either GFP or GFP
and luciferase expression by routine retroviral techniques using the MSCV-IRES-GFP and MSCV-IRES-Luc vectors, respectively.32 Next,
5−10 × 105 Eμ-Myc lymphoma cells 107/MSCV.GFP (n= 9 per group; left upper panel), 6066/MSCV.GFP-Luc (n= 10 vehicle, n= 9 LCL-161; right
upper panel), 4242/MSCV.GFP, expt #1 (n= 6 vehicle; n= 9 LCL-161; left lower panel) or 4242/MSCV.GFP-Luc, expt #2 (n= 9 vehicle; n= 10
LCL-161; right lower panel) were transplanted into syngeneic C57Bl/6 mice (6–12 weeks of age; The Walter and Eliza Hall Institute , Melbourne,
VIC, Australia) via tail vein injection. Three days post transplantation, mice were treated with LCL-161 (75 mg/kg) or vehicle control (buffered
sodium acetate solution) by oral gavage twice weekly. Mice were killed and autopsied at an end point defined by symptomatic disseminated
disease. Kaplan–Meier survival curves are shown. (b) Spleen weights at end point for the respective cohorts of mice as described in a.
(c) Percentage of GFP-positive lymphoma cells in peripheral blood of mice receiving either vehicle control or LCL-161 treatment (as per a) as
assessed by flow cytometry. Peripheral blood was sampled 8 or 11 days post injection with Eμ-Myc 107/MSCV.GFP or 4242/MSCV.GFP (expt #2)
lymphoma, respectively (as described in a). (d) Bioluminescence imaging was performed using the Xenogen IVIS platform (Caliper Life
Sciences, Waltham, MA, USA) and Living Image software (version 2.5, Xenogen). 100 μl of 1.5 mg/ml D-luciferin substrate (ThermoFisher) was
administered by intraperitoneal (i.p.) injection to mice prior to anesthetizing with isoflurane and image acquisition. Representative images of
mice treated with vehicle alone or LCL-161 on day 7 post receipt of Eμ-Myc 6066/MSCV.GFP-Luc lymphoma cells (as per a) are shown. Error
bars represent mean± s.e.m. with sample size chosen to ensure adequate power based on previous publications.13–17 *Po0.05; NS, not
significant using Student’s two-tailed unpaired t-test to compare the means of vehicle vs drug-treated groups, and log-rank analysis was used
for comparison of survival curves. All mouse experiments were in full compliance with the Peter MacCallum Cancer Centre Animal Ethics
Committee.
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Disease acceleration has been reported with other small
molecule therapeutics, most notably BRAF inhibitors causing
‘on-target’ acceleration of RAS-mutant squamous cell carcinomas26

and chronic leukemia.27 Although no tumor regressions were
documented in the phase 1 LCL-161 study (of 53 patients),11

no tumor acceleration was recorded either. As the default
interpretation in nonresponders is usually a lack of efficacy,
an active detrimental effect (i.e., disease acceleration) may be
underappreciated by investigators. Thus, our data provide a
cautionary tale to the interpretation of such studies, whereby the
investigational agent may promote the progression of certain
tumors.

LCL-161 exacerbates the cytokine storm of LPS challenge
LCL-161 induces CCL2, IL-10 and TNFα secretion in vivo.11 Both
CCL2 and IL-10 have stimulatory effects on the growth and
survival of B-cell lymphomas.28,29 Furthermore, in the recently
reported phase I clinical trial of LCL-161 in solid organ
malignancies, CRS was described as the main dose-limiting
toxicity.11 Increases in TNFα and other inflammatory cytokines
peaked within 24 h of human LCL-161 administration. Indeed,
similar cytokine (TNFα release) was detectable in lymphoma-

bearing mice following LCL-161 dosing (Figure 4a), indicating
accelerated lymphoma progression occurred in the context of
changes to the cytokine milieu. However, the absolute serum
TNFα levels were relatively low and not differentially elevated in
mice at the time of killing, indicating that premature deaths were
unlikely to have resulted from CRS (Figure 4b).
To further evaluate the propensity for IAP antagonists to

augment CRS, we next administered LCL-161 to non-tumor-
bearing C57Bl/6 mice prior to activation of inflammatory NFκB
signaling by injection of a sublethal LPS challenge. The induction
of inflammatory cytokines (TNFα and IL-6) in mice challenged
with LPS was markedly increased in the presence of LCL-161
(Figure 4c) to the extent that LCL-161 (and not untreated mice)
required killing due to endotoxemia 4 h after injection. These data
confirm LCL-161 is pharmacologically active in mice at the doses
used in lymphoma experiments. Moreover, LCL-161 has the
capacity to broadly synergize with inflammatory stimuli and can
cooperate in the induction of endotoxic shock in vivo.
LCL-161 was recently described as a ‘double-edged sword’ in

cancer therapy, due to its propensity to induce cytokine release.30

We demonstrated similar cytokine release following dosing of
lymphoma-bearing mice, although it did not constitute a dose-
limiting toxicity. However, LCL-161 augmented a lethal CRS post
LPS challenge indicating a further potential clinical risk with SMAC
mimetics. Cancer patients are often immunosuppressed due to
underlying disease or prior therapies, particularly those with bone
marrow dysfunction due to hematological malignancy. Those
patients developing bacterial infections while on IAP-inhibitor
therapy are likely to be particularly susceptible to septic shock,
again calling for clinical vigilance and a low threshold for
drug discontinuation during active infection. The notion of this
‘double-edged sword’ whereby SMAC mimetics may be detri-
mental to patients is indeed reinforced by our data, indicating the
potential for both disease acceleration and increased susceptibility
to endotoxemia. The clinical translation of IAP antagonists requires
close monitoring to avoid adverse patient outcomes. In conclu-
sion, we suggest that the use of SMAC mimetics to treat
lymphoma should be carefully rationalized according to activity
of specific molecular pathways where possible.
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