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Selective growth inhibition by glycogen synthase kinase-3
inhibitors in tumorigenic HeLa hybrid cells is mediated
through NF-kB-dependent GLUT3 expression
M Watanabe1, N Abe1, Y Oshikiri1, EJ Stanbridge2 and T Kitagawa1

Carcinogenesis and cancer progression, driven by mutations in oncogenes and tumor-suppressor genes, result in biological
differences between normal and cancer cells in various cellular processes. Specific genes and signaling molecules involved in such
cellular processes may be potential therapeutic targets of agents that specifically interact with the key factors in cancer cells.
Increased glucose uptake is fundamental to many solid tumors and well associated with increases in glycolysis and the
overexpression of glucose transporters (GLUTs) such as GLUT1 and GLUT3 at the plasma membrane. Here, we used cell-based
screening to identify glycogen synthase kinase-3b (GSK-3b) inhibitors that selectively target GLUT3-expressing tumorigenic HeLa
cell hybrids as compared with non-tumorigenic hybrids that express GLUT1 alone. The GSK-3 inhibitors as well as GSK-3b RNAi
suppressed GLUT3 expression at the level of transcription, leading to apoptosis. This suppression was associated with NF-kB in a
p53-independent manner. Furthermore, GSK-3 inhibitors exhibited a synergistic effect with anticancer agents such as adriamycin
and camptothecin in GULT3-overexpressing colon cancer cells, but little effect in non-producing A431 cells. These results suggest a
potential use of GSK-3 inhibitors to selectively kill cancer cells that overexpress GLUT3.
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INTRODUCTION
One of the most important considerations in cancer chemotherapy
is selective killing of cancer cells without significant toxicity
to normal cells. Understanding the physiological differences
between normal and cancer cells is essential for the design and
development of anticancer drugs with selective anticancer
activities. Cancer cells are well known to have accelerated
metabolism, higher glucose requirements and increased glucose
uptake.1–5 Indeed, these characteristics are often associated with
increased metastasis and poor survival in cancer patients6–9 and
have been clinically applied to tumor imaging with positron
emission tomography.10,11

Glucose transport is a rate-limiting step for glucose metabolism
and is mediated by glucose transporters (GLUTs) in mammalian
cells. Increased glucose transport in cancer cells has been
associated with increased and deregulated expression of GLUT
proteins.12 There are currently more than 10 members of the
GLUT family in mammalian cells.13 GLUT1, one of the most
intensively studied of all membrane transport proteins, is widely
expressed in proliferating cells.13,14 GLUT3 is the major neuronal
glucose transporter predominantly expressed in neuronal
cells.13,15 In addition, strong expression of both the isoforms
is observed in many tumors, such as gliomas, non-small cell
lung carcinomas, gastroenterological tumors and ovarian
carcinomas.16–19 Upregulated expression of the GLUT family is
often closely associated with malignancy,12,20 although the

specific genes and signaling pathways regulating the expression
remain undefined.
It has been reported that GLUT1 gene expression is regulated by

the hypoxia-induced factor-1 protein.21–23 PI3K-AKT signaling also
mediates the expression of GLUT1.24 On the other hand, Kawauchi
et al.25 recently showed that the expression of GLUT3 was
regulated by NF-kB in a p53-dependent manner in mouse
embryonic fibroblasts. Despite that the p53 protein has a critical
role in responses to genotoxic stress, p53-independent responses
to genotoxic stress have also been reported.26–28 Multiple
genotoxic stimuli such as anticancer drugs, UV radiation and
g radiation resulted in a suppression of GLUT3 expression and
glucose metabolism.29 These results are consistent with recent
findings by us and others, indicating that genotoxic stress controls
apoptosis and GLUT3 expression thorough MEK-ERK signaling
independently of p53.30,31 Our data also suggest that levels of
GLUT3 expression affect sensitivity to genotoxic stress in cancer
cells.31 However, the mechanisms underlying cancer cell survival
and the expression of GLUTs remain unclear, and little
development of chemical compounds or antibodies that
specifically target the GLUT family has been reported.
We have previously demonstrated tumor-associated expression

of GLUT1 or GLUT3 in human cell hybrids derived from cervical
carcinoma HeLa cells and normal fibroblasts.32–34 CGL4, a
tumorigenic hybrid, expressed both GLUT1 and GLUT3, whereas
CGL1, the tumor-suppressed hybrid, expressed GLUT1 alone.34

1Department of Cell Biology and Molecular Pathology, Iwate Medical University, School of Pharmacy, Yahaba, Japan and 2Department of Microbiology and Molecular Genetics,
University of California, Irvine, CA, USA. Correspondence: Professor T Kitagawa, Department of Cell Biology and Molecular Pathology, Iwate Medical University, School of
Pharmacy, 2-1-1 Nishitokuta, Yahaba, Shiwa 028-3694, Japan.
E-mail: tkitaga@iwate-med.ac.jp
Received 7 May 2012; revised 4 June 2012; accepted 6 June 2012

Citation: Oncogenesis (2012) 1, e21; doi:10.1038/oncsis.2012.21
& 2012 Macmillan Publishers Limited All rights reserved 2157-9024/12

www.nature.com/oncsis

http://dx.doi.org/10.1038/oncsis.2012.21
mailto:tkitaga@iwate-med.ac.jp
http://www.nature.com/ONCSIS


This tumor-associated GLUT3 expression is regulated at the level
of transcription at least.34 Based on this background, we used a
screening method to identify drugs that predominantly kill a
tumorigenic HeLa cell hybrid as a model of GLUT3-overexpressing
cancer cells. By screening a library of inhibitors, we identified
several glycogen synthase kinase-3b (GSK-3b) inhibitors as
potential lead compounds. These inhibitors suppressed GLUT3
expression at the transcriptional level in HeLa cells and human cell
hybrids. We also demonstrated that this suppression occurred
through NF-kB signaling in a p53-independent manner, leading to
apoptotic cell death. Furthermore, GSK-3b inhibition induced a
synergistic cytotoxic effect in GULT3-overexpressing colon cancer
cells (Caco-2) when combined with DNA-damaging agents such as
adriamycin (ADR) and camptothecin (CPT), but had little effect in
non-producing carcinoma (A431).

RESULTS
Chemical screening for inhibitors that predominantly inhibit the
growth of cancer cells
Previously, we have reported that a tumorigenic HeLa cell hybrid
CGL4 expressed GLUT3, which was undetectable in non-tumori-
genic CGL1 cells.34 The increased glucose uptake by the
tumorigenic cells was shown to be well associated with the
level of GLUT3 expression.34 We have hypothesized that this
tumor-associated GLUT3 expression may be regulated by a
putative tumor-suppressor gene on chromosome 11, whose
deletion or inactivation leads to the tumorigenesis of the HeLa
cell hybrids.35 To understand the physiological and molecular
mechanism(s) underlying the putative tumor-suppressor function,
we screened for inhibitors that selectively kill tumorigenic CGL4 cells
in a library of 285 chemicals prepared by the Screening Committee
of Anticancer Drugs (SCADS, http://gantoku-shien.jfcr.or.jp/). The
compounds were mainly commercially available antitumor drugs
and kinase inhibitors, dissolved in DMSO at 10mM.
We compared the cytotoxicity between CGL4 and CGL1 cells of

each drug at various concentrations by using a cell counting kit-8
viability assay (CCK-8). The results were assigned as SCGL1/CGL4; the
log ratio of the normalized cell number in CGL1 divided by the
normalized cell number in CGL4 (Figure 1a). A positive SCGL1/CGL4
score indicates that the drug was selectively lethal or inhibited the
growth of CGL4 cells. In contrast, a negative SCGL1/CGL4 score
indicates that the drug selectively killed CGL1 cells. A score of zero
means similar effects on both the hybrids.
Due to this assay, we identified a number of GSK-3 inhibitors

with high SCGL1/CGL4 scores (Figures 1b and c). Unexpectedly, these
inhibitors showed low SCGL1/HeLa-S3 scores (Figure 1c), suggesting
their toxicity to be greater in CGL4 cells than HeLa-S3 cells, which
showed a lower level of GLUT3 expression (Supplementary Figure
S1). Consistent with the results of primary screening (Figures 1c
and b), treatment with the GSK-3 inhibitors reduced the viability of
CGL4 cells in a dose-dependent manner (Figure 1d and
Supplementary Figure S2). Growth was inhibited at a half-maximal
inhibitory concentration (IC50) of 0.66 mM, fivefold lower than the
concentration in non-tumorigenic CGL1 cells (Supplementary
Table S1). A non-GSK-3 inhibitor, vinblastine, inhibited the growth
of both hybrid cells similarly (Supplementary Figure S3 and
Supplementary Table S1).
We next determined whether GSK-3 inhibitors suppress the

phosphorylation of GSK-3 in these HeLa cell hybrids. Western blot
analysis showed the phosphorylation of GSK-3a/b Y276/Y216 in
three cell lines (Figure 1e). However, a marked reduction in the
phosphorylation of GSK-3a/b Y276/Y216 was observed in the cell
lines after treatment for 24 h with 10 mM GSK-3 IX, which induced
substantial activation of caspase-3 only in CGL4 cells (Figure 1e).
To confirm these findings, GSK-3b-specific siRNA was transfected
into these cell lines (Figure 1f). A correlation between the
reduction in GSK-3b protein and activation of caspase-3 was

observed in CGL4 cells but not in non-tumorigenic CGL1 cells and
parental HeLa cells. These results suggest a key role of GSK-3b in
the proliferation and sustained survival of GLUT3-expressing
cancer cell lines.

GSK-3 inhibitors and GSK-3 downregulation suppress GLUT3 gene
expression
As GLUT3 is overexpressed in tumorigenic CGL4 cells that suffered
selective cytotoxicity from GSK-3 inhibitors, we examined if
inhibition of GSK-3 affects the expression of GLUT3 and
consumption of glucose in CGL4 cells. GSK-3 IX and kenpaullone
significantly inhibited GLUT3 gene expression in a dose-depen-
dent manner (Figure 2a). The accumulation of GLUT3 mRNA was
further quantified by the RT–PCR method and shown to be
reduced 40–50% by treatment with GSK-3 IX (10 mM) or
kenpaullone (20 mM). In contrast, the expression of GLUT1 was
unaffected by these inhibitors (Figure 2a), suggesting a link
between GSK-3 and the GLUT3 expression during growth
suppression in cancer cells. Whereas a reduction in the
phosphorylation of GSK-3a/b by 10mM of GSK-3 IX was similarly
observed in all three cell lines tested, glucose consumption was
markedly impaired only in the tumorigenic CGL4 cells (Figure 2b).
As expected, transfection of GSK-3b siRNA, which mediated the

downregulation of GSK-3b, resulted in an apparent decrease in the
expression of GLUT3 but not GLUT1 in CGL4 cells (Figure 2c).
Knockdown of GSK-3b by siRNA was further confirmed in HeLa cell
hybrids at the protein level, which resulted in efficient reduction of
GSK-3b protein in CGL4 as well as HeLa and CGL1 cells,
accompanied by a decrease in glucose consumption only in
CGL4 cells (Figure 2d). Thus, GSK-3 may control cell growth
through GLUT3-dependent glucose metabolism in tumorigenic
CGL4 cells.

Suppression of GLUT3 expression by GSK-3 inhibitors is
independent of p53
Recently, we have reported the suppressive effects on GLUT3
expression of DNA-damaging agents, such as ADR, etoposide
(ETOP) and CPT (Figure 2a, Watanabe et al.31), although there was
no difference in toxicity between tumorigenic and non-
tumorigenic HeLa cell hybrids. As these effects were
independent of p53, we determined whether or not p53
influences the suppressive effect of GSK-3 inhibitors on GLUT3
expression in CGL4 cells. The p53 protein was fully depleted by
adding siRNA in CGL4 cells treated with either GSK-3 IX or ADR
(Supplementary Figure S4a). The changes in GLUT3 expression
were not significantly affected by p53-siRNA (Supplementary
Figure S4b). As a control experiment, the expression of GLUT3 was
suppressed by ADR in the p53-depleted CGL4 cells
(Supplementary Figure S4b).

Downregulation of GSK-3 inhibits NF-kB activity in CGL4 cells
Kawauchi et al.25 showed the importance of the transcriptional
activity of NF-kB to Glut3 expression in mouse embryonic
fibroblasts.25 A previous study linked the inhibition of GSK-3 to
the negative regulation of NF-kB activity.36 We investigated the
relationship between NF-kB activity and GLUT3 expression in CGL4
cells. We found the expression to be significantly inhibited by
siRNA for p65, a component of NF-kB (Figures 3a and b). In
contrast, knockdown of p65 did not affect the expression of
GLUT1. We next examined whether the effect of GSK-3 inhibition
involves suppression of NF-kB activity. p65-dependent transcrip-
tional activity was suppressed by both GSK-3 siRNA (Figure 3c) and
GSK-3 IX (Figure 3d) in CGL4 cells. Thus, it is suggested that GSK-3
inhibition contributes to the suppression of GLUT3 expression
through negative regulation of the transcriptional activity of
NF-kB.
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Constitutive expression of GLUT3 renders cells more resistant to
GSK-3 -mediated death
As a signaling pathway in GLUT3 expression through GSK-3 would
be important for survival of tumorigenic CGL4 cells, we next
assessed the role of GLUT3 in cell death induced by GSK-3
inhibitors. In previously constructed CGL4/gt3 cells in which GLUT3
was stably overexpressed using a viral promoter,34 GLUT3 mRNA
was shown to be about fourfold higher than in the parental CGL4
cells (Figure 4a). After a remarkable reduction in the phosphoryla-
tion of GSK-3a/b by 5 mM GSK-3 IX (Figure 4b), higher levels of
GLUT3 expression and glucose consumption remained observable
in the CGL4/gt3 cells (Figures 4b and c).

We examined the effect of GSK-3 inhibitor on growth in vitro
using various amounts of GSK-3 IX for 72 h. As shown in
Figure 4c, a dose-dependent cytotoxic effect of GSK-3 IX was
observed. The IC50 value of GSK-3 IX for CGL4 cells was
0.68±0.05 mM, whereas CGL4/gt3 cells were more resistant, with
an IC50 of about 7.03±0.07 mM (Figure 4d). These results suggest
that the increased GLUT3 expression is rather resistant to GSK-3
inhibitors acting on the growth of parental CGL4 in which
endogenous GLUT3 expression was suppressed. In fact, GLUT3
promoter activity was markedly suppressed by treatment
with GSK-3 IX and GSK-3b siRNA in CGL4 cells (Supplementary
Figure S5).

CGL1 vs CGL4

CGL1 vs HeLa-3S

S
 s

co
re

0

0.5

-0.5

1.0

1.5

2.0

C
el

l s
ur

vi
va

l
(%

 o
f u

nt
re

at
ed

)

Concentration, μM

0

20

40

60

80

100

120

CGL4

CGL1

HeLa-S3

0.1

GSK-3β

β-ACTIN

GFP si
RNA

GSK-3
β s

iR
NA1

GSK-3
β s

iR
NA2

GSK-3
β s

iR
NA1

GSK-3
β s

iR
NA2

GSK-3
β s

iR
NA2

GSK-3
β s

iR
NA1

GFP si
RNA

GFP si
RNA

HeLa-S3 CGL4

R
ea

tiv
e

ca
sp

as
e-

3 
ac

tiv
ity

0

1.0

0.5

1.5

R
ea

tiv
e 

ca
sp

as
e-

3
ac

tiv
ity

0
1
2
3
4
5
6
7
8
9

2.0

GSK-3α/β,
Y276/Y216

GSK-3β

HeLa-S3CGL1

GSK-3 IX:

Indirubin-3'-m
onoxim

e

GSK-3 inhibitor IX

Kenpaullone

1-Azakenpaullone

CGL1

S CGL1/CGL4

S
 C

G
L1

/C
G

L4

Positive

Negative

Zero
(No change)

+ Inhibitor

0.5

1.0

1.5

2.0

285 inhibitors, 10 μM-1.5

-1.0

-0.5

0

Indirubin-3'-monoxime

GSK-3 inhibitor IX

Kenpaullone

1-Azakenpaullone

285
inhibitors

CGL4

100.010.01.0

+-+-+-

CGL1
CGL4

Figure 1. A screen to discover agents that inhibit the growth of CGL4 cells. (a) A scheme of the drug screen. CGL1 or CGL4 cells grown in
96-well plates were exposed to a chemical library of 285 compounds for 72 h. The logarithm of the normalized cell number in CGL1 versus
CGL4 provides a summary statistic (SCGL1/CGL4) for each compound. (b) Results of the screening. SCGL1/CGL4 is plotted for all compounds. (c) Part
of the results, SCGL1/CGL4 (gray bar) and SHeLa-S3/CGL4 (white bar) are plotted for four compounds. (d) The viability of HeLa-S3, CGL1 or CGL4 cells
cultured with GSK-3 IX for 72 h. Data are expressed as the mean±s.d. (n¼ 3). (e, upper panels) Phosho-GSK-3 detection by western blot
analysis of protein extract from each cell line after 8 h treatment with 0.1% DMSO (� ) or 10mM GSK-3 IX (þ ). (Lower panels) Apoptotic
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Synergistic cytotoxicity induced by GSK3 inhibitors and
DNA-damaging agents in GLUT3-upregulated tumor cells
AS the present results indicate selective cytotoxicity of GSK-3
inhibitors in GLUT3-expressing tumor cells (Figure 1c), upregula-
tion of GLUT3 expression may be directly linked to the GSK-3
inhibitor-induced cell death. To test this possibility, Caco-2 cells,
which are p53-null colonic carcinoma cells37 having greater
expression of GLUT3 (Figure 5a, Supplementary Table S2), were
tested for combined sensitivity to GSK-3 IX (0–20 mM) and ETOP
(1.5625–200mM). As a control experiment, a skin cancer cell line,
A431, in which GLUT3 mRNA was nearly undetectable (Figure 5a,
Supplementary Table S2), was similarly examined. The expression
of GLUT1 was also determined in both cell lines (Figure 5a,
Supplementary Table S2).
After 72 h of each treatment, cell viability was measured by a

CCK-8 assay. A significant increase in sensitivity to GSK-3 IX was
evident in Caco-2 cells when compared with A431 cells (Figure 5b,
Supplementary Table S3). In contrast, Caco-2 cells were more
resistant to ETOP than the A431 cell line (Figure 5b,
Supplementary Table S3). Then, we tested the combined effects
of either 0.5–1.0 mM ETOP and 0.15625–20 mM GSK-3 IX or

1.5625–200 mM ETOP and 0.5–1.0 mM GSK-3 IX. We found that
ETOP-mediated cell death at the subtoxic doses (6.2–50 mM) was
markedly enhanced by GSK-3 IX (0.25–4 mM) in Caco-2 cells
(Figure 5c). A similar effect of GSK-3 IX (0.25–4 mM) was obtained
with another DNA-damaging agent, CPT (Supplementary Figure
S6). In A431 cells, however, these synergistic effects were not seen
(Figure 5d, Supplementary Table S3 and Supplementary Figure
S6), suggesting that a GSK-3 inhibitor combined with a DNA-
damaging agent would be effective against GLUT3-overexpress-
sing tumor cells.

DISCUSSION
The targeting of glucose metabolism may have therapeutic
potential against tumor cells.9,20,38 In this study, we employed a
screening strategy using a pair of HeLa-derived cell hybrids35 to
search for small molecules that selectively kill tumorigenic cells
overexpressing GLUT3. We identified several commercially
available GSK-3 inhibitors with selective killing activity,
demonstrating a novel role for GSK-3 in the control of GLUT3
expression in tumor cell growth. Although GSK-3 is known to be
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essential in glycogen synthesis, it has also been shown to be a
crucial regulator of cell structure, metabolism and survival.39,40

GSK-3 also functions as a pro-survival factor in pancreatic cancer41

as well as a modulator for apoptosis in colon cancer cells42 and for
Alzheimer’s disease.43 Our findings indicate an additional role of
GSK-3 in survival in GLUT3-expressing cancer cells. It should be
noted that this inhibition by GSK-3 occurs independent of p53.
The inhibition of GSK-3 has been shown to result in the

reduction of intracellular glucose levels in glioma cells, although
the molecular mechanism for this reduction remains unknown.44

We observed that GSK-3 inhibitors reduced GLUT3 expression and
glucose consumption in tumorigenic CGL4 cells. Thus, GSK3-
dependent changes in the intracellular glucose concentration in
glioma cells might be partly associated with GLUT3 expression.
We also demonstrated that the GSK-3-dependent downregula-

tion of GLUT3 expression is associated with NF-kB impaired by
both GSK-3 inhibitors and siRNA (Figure 3). These observations are
consistent with the finding that Glut3 gene expression in mouse
embryonic fibroblasts is dependent on NF-kB.25 Although the
mechanism underlying the inactivation of NF-kB followed by
GSK-3 inhibition remains unclear, it should be noted that GSK-3
has an important role in the constitutive NF-kB signaling in
pancreatic cancer by regulating IKK activity.45 Thus, cascades
involved in NF-kB signaling through IkB46 and b-catenin47,48 may
be partly linked to the GSK-3-dependent GLUT3 expression and
cell growth. However, the direct link between GLUT3 expression

and cell growth remains unclear. More studies including in vivo
models are needed to clarify this subject.
The observed dependence on GSK-3 provides a potential

therapeutic target in tumor cells defined by overexpression of the
GLUT3 gene. In lung, colorectal, ovarian, laryngeal and breast
carcinomas, higher levels of GLUT1 or GLUT3 were significant
markers of decreased survival of patients.49–54 A close association
between 18F-FDG uptake and increased glucose metabolism (GLUT1
and GLUT3) is observed in pulmonary pleomorphic carcinoma,55

which warrants a search for new therapeutic approaches using GSK-3
inhibitors. As GSK-3 has many key roles in regulating a diverse range
of cellular functions, including glycogen metabolism, transcription,
translation, cell cycle and apoptosis,39 it has potential applications as
a drug target for diabetes and neurodegenerative disorders,
including Alzheimer’s disease.56

The present finding should contribute to the discovery of GSK-3
inhibitors as antitumor agents for GLUT3-expressing cells. The side
effects of GSK-3 inhibitors should also be considered. For example,
as GSK-3 normally has suppressive roles in Wnt, signaling via
hedgehog and Notch might be mimicked by GSK-3 inhibition,
potentially increasing the risk of oncogenesis.57 The cytotoxicity of
GSK-3 inhibitors may be another issue and GSK-3 inhibition
induces apoptosis through a TRAIL-mediated mechanism.44

However, our screenings help to focus on the clinical
advantages of GSK-3 inhibitors against GLUT3-expressing tumor
cells and the findings shown here may have some benefits for
cancer therapy and a clinical safety.
Results of synergistic killing by GSK-3 inhibitors and DNA-

damaging chemotherapeutic agents for GLUT3-expressing Caco-2
cells but not GLUT3-depleted cancer cell lines lead to another
implication for future studies (Figures 5c and d, Supplementary
Figure 6 and Supplementary Table S3). ETOP or CPT, a standard
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DNA-damaging agent, is often used in patients with malignant
tumors. Because a GSK-3 inhibitor and DNA-damaging agent
would be theoretically applicable only in GLUT3-upregulated
cancer cells, lower doses of these agents could be provided to the
proper cancer targets.
Understanding the molecular mechanism by which GSK-3

contributes to the proliferation of GLUT3-expressing tumor cells
awaits future experiments. It is interesting that overexpression of
GLUT3 using a viral vector rendered CGL4 cells more resistant to
GSK-3-mediated cytotoxicity (Figures 4a–d). These results suggest
that some GSK-3-dependent signals have a crucial role as a
mediator of GSK-3-induced cytotoxicity. It was previously been
reported that deregulation of the PI-3K (phosphatidylinositol
3-kinase) pathway and activation of AKT may be important for
GSK-3 inhibition in glioma cells.44 Tumors with a constitutively
active AKT associated with loss of phosphatase and tensin
homolog deleted from chromosome 10 (PTEN) gene may be
sensitive to GSK-3 inhibitors. In addition, p27Kip1 is a critical
downstream mediator of the cell cycle arrest associated with GSK-
3 inhibition in MLL-transformed cells.58 The involvement of these
effectors in GSK-3-induced suppression of GLUT3 expression and
apoptosis needs to be clarified.
In conclusion, chemical screening with a pair of HeLa cell

hybrids identified GSK-3 inhibitors as useful for the selective killing
of GLUT3-expressing tumor cells. This study showed that (i) the
induction of pro-apoptotic effects by the drugs is mediated
through the activation of caspase-3; (ii) inhibition of GLUT3
expression is associated with inhibition of NF-kB activity; and

(iii) synergistic cytotoxicity between GSK-3 inhibitors and
DNA-damaging agents can be expected.
The results suggest for the first time that GSK-3 is a molecular

target for GLUT3-expressing tumor therapy. As possible target
cells are limited in this study, it would be examined in more cell
types. During the preparation of this manuscript, chemothera-
peutic agents that attack GLUT1 in renal tumor cells were
identified.38 Thus, the expression levels of GLUT3 as well as
GLUT1 may provide useful pharmacodynamic information for
clinical trials in malignant tumors. More studies will be needed to
clarify how GSK-3 inhibition is clinically applicable to the selective
killing of GLUT3-expressing tumor cells.

MATERIALS AND METHODS
Inhibitor, antibodies, reagents and RNA interference
The library (http://gantoku-shien.jfcr.or.jp/) used was kindly provided by
the SCADS supported by a Grant-in-Aid for Scientific Research on the
Priority Area ‘Cancer’ from the Ministry of Education, Culture, Sports,
Science and Technology, Japan. The mouse monoclonal antibody to b-
actin was purchased from Sigma (St Louis, MO, USA), while those to human
phospho-GSK-3 and GSK-3b were from BD Biosciences (Bedford, MA, USA).
The rabbit monoclonal antibody to human p65 was purchased from
Epitomics (Burlingame, CA, USA). The enhanced chemiluminescence (ECL)
kit was obtained from GE Healthcare (Chalfont St Giles, UK). The
Lipofectamine 2000 reagent and siRNAs to GSK-3b (Supplementary Table
S4) and p65 (RELA: HSS184266) were purchased from Invitrogen (Carlsbad,
CA, USA). ADR, CPT, ETOP, GSK-3 inhibitor IX and kenpaullone were
obtained from Calbiochem (La Jolla, CA, USA).
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Screening
Inhibitor screening was conducted using a subset of the SCADS library
containing 285 compounds in three 96-well microplates. HeLa-S3, CGL1
and CGL4 cells were seeded in duplicate 96-well plates on day 0, and each
inhibitor was added at 10 mM on day 1. Cell viability was determined on day
4 by the water-soluble tetrazolium salt (WST-8) assay using cell counting
kit-8 (Dojindo, Kumamoto, Japan) as described previously.59 The cell
viability from duplicate plates was averaged, and a S-score was calculated
using the following formula: S CGL1 or HeLa-S3/CGL4¼ log10 (% viability of
CGL1 or HeLa-S3/% viability of CGL4).

Cell culture and transfection
HeLa-S3 was obtained from the American Type Culture Collection
(Manassas, VA, USA). CGL1, CGL4 and CGL4/gt3 (GLUT3-overexpressing)
cells were previously established as tumorigenic derivatives of a hybrid,
ESH5, obtained from HeLa D98/AH2 cells and normal human fibro-
blasts.32–35,60 HeLa-S3, CGL1, CGL4 and CGL4/gt3 cells were cultured in
DMEM (Invitrogen) containing 5% fetal bovine serum (MBL, Nagoya, Japan),
supplemented with penicillin (100U/ml) and streptomycin (100mg/ml) under
humidified 5% CO2/95% air at 37 1C, as described previously.34 Transfection
was performed as reported.31

Semi-quantitative RT–PCR
Semi-quantitative RT–PCR was performed as described previously.31 Briefly,
total RNA for preparing RT–PCR templates was extracted using TRIzol
(Invitrogen). The cDNA was synthesized from 1mg of total RNA and then
subjected to PCR. Primer sequences are described in Supplementary Table S4.
RT–PCR results are representative of at least three independent experiments.

Quantitative real-time PCR analysis
This was performed using TaqMan Universal Master Mix II (Applied
Biosystems, Foster City, CA, USA) under the following conditions: 15min at
95 1C followed by 40 cycles of 95 1C for 15 s and 60 1C for 1min, using a
7500 Real-time PCR system (Applied Biosystems). The predesigned primer
and probe sets for human GLUT1, GLUT3 and b-actin are commercially
available (Applied Biosystems; GLUT1: Hs00892681_m1, GLUT3:
Hs00359840_m1, b-actin: Hs99999903_m1). Threshold-cycle (Ct) values
were automatically calculated for each replicate and used to determine the
relative expression of the gene of interest relative to reference genes for
both treated and untreated samples by the 2�DDCt method.

Plasmids
Human GLUT3 promoter–reporter constructs (GLUT3-P-S1-4) were gener-
ated by subcloning of the upstream 50 region of the human GLUT3 gene
into pGL4.79 (Promega, Madison, CA, USA) upstream of the renilla
luciferase gene. pGL4.13 (Promega) was used as the control plasmid. The
NF-kB reporter plasmid (p55IgK-Luc) was kindly provided by Dr K Kawasaki
(Doushisha Women’s college).

Transcriptional reporter assays
For the GLUT promoter-luciferase assay, CGL4 cells were cotransfected with
either GLUT promoter-Luc or vector plasmids (pGL4.79) or pGL4.13 as an
internal control for the transfection rate. For the NF-kB reporter assay, CGL4
cells were cotransfected with either p55IgK-Luc or vector plasmids (pGL4.79)
or pGL4.13 as an internal control for the transfection rate. A dual-luciferase
assay kit (Promega) was used according to the manufacturer’s instructions.
The activity levels were expressed relative to the vector control.

Immunoblotting
Cells were cultured in DMEM plus 5% (v/v) fetal bovine serum (MBL)
overnight. After transfection or the addition of appropriate inhibitors, the
cells were incubated for another 24 h. They were then harvested and lysed
in lysis buffer (20mM Tris–HCl (pH 7.5), 150mM NaCl, 1mM EDTA, 1.0mM

dithiothreitol, 20mM glycerophosphate, 2mM Na3VO4, 1% NP40 and 1mM

phenylmethylsulfonyl fluoride). Whole-cell lysate was electrophoresed on a
10% SDS–PAGE gel, transferred to PVDF membranes and immunoblotted
with the antibody. b-Actin was used as a loading control.

Cell viability analysis
Cell viability was determined with cell counting kit-8 (CCK-8, Dojindo)
according to the manufacturer’s protocol. Briefly, 2.5� 103 cells were

plated onto 96-well plates and treated with the appropriate inhibitor as
indicated in figure legends. After incubation at 37 1C in 5% CO2/95% air for
72 h, cell viability was calculated relative to the DMSO control.

Measurement of caspase-3 activity
Caspase-3 activity was measured by a fluorometric assay using AC-DEVD-
AMC peptide (Sigma) as a fluorogenic substrate for Caspase-3. Cells were
harvested and lysed in lysis buffer (20mM HEPES (pH 7.5), 0.1% TritonX-100
and 5mM dithiothreitol). Whole-cell lysate was then incubated with the
caspase-3 fluorogenic substrate AC-DEVD-AMC at 37 1C for 1 h. The
cleavage of the peptide was quantified in a spectrofluorometer with an
excitation wavelength of 360 nm and emission wavelength of 460 nm.

Measurements of glucose consumption
Cells were seeded in 12-well dishes and the medium was changed after an
overnight culture. Cells (about 90% confluent) were incubated for 24 h and
then the culture medium was collected for measurements of glucose
concentrations using a Glucose (GO) assay kit (Sigma). Glucose consump-
tion was calculated from a standard curve.

Statistical analysis
The statistical significance of differences in data was determined using the
unpaired Student’s t-test. A P-value o0.01 or o0.05 was considered
statistically significant.
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