Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

SPOP regulates prostate epithelial cell proliferation and promotes ubiquitination and turnover of c-MYC oncoprotein

Abstract

The E3 ubiquitin ligase adaptor speckle-type POZ protein (SPOP) is frequently dysregulated in prostate adenocarcinoma (PC), via either somatic mutations or mRNA downregulation, suggesting an important tumour suppressor function. To examine its physiologic role in the prostate epithelium in vivo, we generated mice with prostate-specific biallelic ablation of Spop. These mice exhibited increased prostate mass, prostate epithelial cell proliferation, and expression of c-MYC protein compared to littermate controls, and eventually developed prostatic intraepithelial neoplasia (PIN). We found that SPOPWT can physically interact with c-MYC protein and, upon exogenous expression in vitro, can promote c-MYC ubiquitination and degradation. This effect was attenuated in PC cells by introducing PC-associated SPOP mutants or upon knockdown of SPOP via short-hairpin-RNA, suggesting that SPOP inactivation directly increases c-MYC protein levels. Gene Set Enrichment Analysis revealed enrichment of Myc-induced genes in transcriptomic signatures associated with SPOPMT. Likewise, we observed strong inverse correlation between c-MYC activity and SPOP mRNA levels in two independent PC patient cohorts. The core SPOPMT;MYCHigh transcriptomic response, defined by the overlap between the SPOPMT and c-MYC transcriptomic programmes, was also associated with inferior clinical outcome in human PCs. Finally, the organoid-forming capacity of Spop-null murine prostate cells was more sensitive to c-MYC inhibition than that of Spop-WT cells, suggesting that c-MYC upregulation functionally contributes to the proliferative phenotype of Spop knock-out prostates. Taken together, our data highlight SPOP as an important regulator of luminal epithelial cell proliferation and c-MYC expression in prostate physiology, identify c-MYC as a novel bona fide SPOP substrate, and help explain the frequent inactivation of SPOP in human PC. We propose SPOPMT-induced stabilization of c-MYC protein as a novel mechanism that can increase total c-MYC levels in PC cells, in addition to amplification of c-MYC locus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, Sivachenko AY et al. The genomic complexity of primary human prostate cancer. Nature 2011; 470: 214–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, Theurillat JP et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet 2012; 44: 685–689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kan Z, Jaiswal BS, Stinson J, Janakiraman V, Bhatt D, Stern HM et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 2010; 466: 869–873.

    Article  CAS  PubMed  Google Scholar 

  4. Cancer Genome Atlas Research Network. Electronic address scmo, Cancer Genome Atlas Research N. The Molecular Taxonomy of Primary Prostate Cancer. Cell 2015; 163: 1011–1025.

    Article  Google Scholar 

  5. Geng C, He B, Xu L, Barbieri CE, Eedunuri VK, Chew SA et al. Prostate cancer-associated mutations in speckle-type POZ protein (SPOP) regulate steroid receptor coactivator 3 protein turnover. Proc Natl Acad Sci USA 2013; 110: 6997–7002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Geng C, Rajapakshe K, Shah SS, Shou J, Eedunuri VK, Foley C et al. Androgen receptor is the key transcriptional mediator of the tumor suppressor SPOP in prostate cancer. Cancer Res 2014; 74: 5631–5643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhuang M, Calabrese MF, Liu J, Waddell MB, Nourse A, Hammel M et al. Structures of SPOP-substrate complexes: insights into molecular architectures of BTB-Cul3 ubiquitin ligases. Mol Cell 2009; 36: 39–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Haffner MC, Mosbruger T, Esopi DM, Fedor H, Heaphy CM, Walker DA et al. Tracking the clonal origin of lethal prostate cancer. J Clin Invest 2013; 123: 4918–4922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kwon JE, La M, Oh KH, Oh YM, Kim GR, Seol JH et al. BTB domain-containing speckle-type POZ protein (SPOP) serves as an adaptor of Daxx for ubiquitination by Cul3-based ubiquitin ligase. J Biol Chem 2006; 281: 12664–12672.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Q, Shi Q, Chen Y, Yue T, Li S, Wang B et al. Multiple Ser/Thr-rich degrons mediate the degradation of Ci/Gli by the Cul3-HIB/SPOP E3 ubiquitin ligase. Proc Natl Acad Sci USA 2009; 106: 21191–21196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang P, Gao K, Tang Y, Jin X, An J, Yu H et al. Destruction of DDIT3/CHOP protein by wild-type SPOP but not prostate cancer-associated mutants. Hum Mutat 2014; 35: 1142–1151.

    Article  CAS  PubMed  Google Scholar 

  12. Zhu H, Ren S, Bitler BG, Aird KM, Tu Z, Skordalakes E et al. SPOP E3 ubiquitin ligase adaptor promotes cellular senescence by degrading the SENP7 deSUMOylase. Cell Rep 2015; 13: 1183–1193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu F, Dai X, Gan W, Wan L, Li M, Mitsiades N et al. Prostate cancer-associated mutation in SPOP impairs its ability to target Cdc20 for poly-ubiquitination and degradation. Cancer Lett 2017; 385: 207–214.

    Article  CAS  PubMed  Google Scholar 

  14. Theurillat JP, Udeshi ND, Errington WJ, Svinkina T, Baca SC, Pop M et al. Prostate cancer. Ubiquitylome analysis identifies dysregulation of effector substrates in SPOP-mutant prostate cancer. Science 2014; 346: 85–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. An J, Ren S, Murphy SJ, Dalangood S, Chang C, Pang X et al. Truncated ERG oncoproteins from TMPRSS2-ERG fusions are resistant to SPOP-mediated proteasome degradation. Mol Cell 2015; 59: 904–916.

    Article  CAS  PubMed  Google Scholar 

  16. Gan W, Dai X, Lunardi A, Li Z, Inuzuka H, Liu P et al. SPOP promotes ubiquitination and degradation of the ERG oncoprotein to suppress prostate cancer progression. Mol Cell 2015; 59: 917–930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. An J, Wang C, Deng Y, Yu L, Huang H . Destruction of full-length androgen receptor by wild-type SPOP, but not prostate-cancer-associated mutants. Cell Rep 2014; 6: 657–669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li C, Ao J, Fu J, Lee DF, Xu J, Lonard D et al. Tumor-suppressor role for the SPOP ubiquitin ligase in signal-dependent proteolysis of the oncogenic co-activator SRC-3/AIB1. Oncogene 2011; 30: 4350–4364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Groner AC, Cato L, de Tribolet-Hardy J, Bernasocchi T, Janouskova H, Melchers D et al. TRIM24 is an oncogenic transcriptional activator in prostate cancer. Cancer Cell 2016; 29: 846–858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Garcia-Flores M, Casanova-Salas I, Rubio-Briones J, Calatrava A, Dominguez-Escrig J, Rubio L et al. Clinico-pathological significance of the molecular alterations of the SPOP gene in prostate cancer. Eur J Cancer 2014; 50: 2994–3002.

    Article  CAS  PubMed  Google Scholar 

  21. Claiborn KC, Sachdeva MM, Cannon CE, Groff DN, Singer JD, Stoffers DA . Pcif1 modulates Pdx1 protein stability and pancreatic beta cell function and survival in mice. J Clin Invest 2010; 120: 3713–3721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kessler JD, Kahle KT, Sun T, Meerbrey KL, Schlabach MR, Schmitt EM et al. A SUMOylation-dependent transcriptional subprogram is required for Myc-driven tumorigenesis. Science 2012; 335: 348–353.

    Article  CAS  PubMed  Google Scholar 

  23. Gurel B, Iwata T, Koh CM, Jenkins RB, Lan F, Van Dang C et al. Nuclear MYC protein overexpression is an early alteration in human prostate carcinogenesis. Mod Pathol 2008; 21: 1156–1167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Iwata T, Schultz D, Hicks J, Hubbard GK, Mutton LN, Lotan TL et al. MYC overexpression induces prostatic intraepithelial neoplasia and loss of Nkx3.1 in mouse luminal epithelial cells. PLoS ONE 2010; 5: e9427.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Koh CM, Gurel B, Sutcliffe S, Aryee MJ, Schultz D, Iwata T et al. Alterations in nucleolar structure and gene expression programs in prostatic neoplasia are driven by the MYC oncogene. Am J Pathol 2011; 178: 1824–1834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Barfeld SJ, Fazli L, Persson M, Marjavaara L, Urbanucci A, Kaukoniemi KM et al. Myc-dependent purine biosynthesis affects nucleolar stress and therapy response in prostate cancer. Oncotarget 2015; 6: 12587–12602.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ju X, Ertel A, Casimiro MC, Yu Z, Meng H, McCue PA et al. Novel oncogene-induced metastatic prostate cancer cell lines define human prostate cancer progression signatures. Cancer Res 2013; 73: 978–989.

    Article  CAS  PubMed  Google Scholar 

  28. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 2010; 18: 11–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Amati B . Myc degradation: dancing with ubiquitin ligases. Proc Natl Acad Sci USA 2004; 101: 8843–8844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mei Z, Zhang D, Hu B, Wang J, Shen X, Xiao W . FBXO32 targets c-Myc for proteasomal degradation and inhibits c-Myc activity. J Biol Chem 2015; 290: 16202–16214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Farrell AS, Sears RC . MYC degradation. Cold Spring Harb Perspect Med 2014; 4.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Akhoondi S, Sun D, von der Lehr N, Apostolidou S, Klotz K, Maljukova A et al. FBXW7/hCDC4 is a general tumor suppressor in human cancer. Cancer Res 2007; 67: 9006–9012.

    Article  CAS  PubMed  Google Scholar 

  33. Kemp Z, Rowan A, Chambers W, Wortham N, Halford S, Sieber O et al. CDC4 mutations occur in a subset of colorectal cancers but are not predicted to cause loss of function and are not associated with chromosomal instability. Cancer Res 2005; 65: 11361–11366.

    Article  CAS  PubMed  Google Scholar 

  34. Bredel M, Bredel C, Juric D, Harsh GR, Vogel H, Recht LD et al. Functional network analysis reveals extended gliomagenesis pathway maps and three novel MYC-interacting genes in human gliomas. Cancer Res 2005; 65: 8679–8689.

    Article  CAS  PubMed  Google Scholar 

  35. Yada M, Hatakeyama S, Kamura T, Nishiyama M, Tsunematsu R, Imaki H et al. Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J 2004; 23: 2116–2125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. von der Lehr N, Johansson S, Wu S, Bahram F, Castell A, Cetinkaya C et al. The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol Cell 2003; 11: 1189–1200.

    Article  CAS  PubMed  Google Scholar 

  37. Kim SY, Herbst A, Tworkowski KA, Salghetti SE, Tansey WP . Skp2 regulates Myc protein stability and activity. Mol Cell 2003; 11: 1177–1188.

    Article  CAS  PubMed  Google Scholar 

  38. Zeng C, Wang Y, Lu Q, Chen J, Zhang J, Liu T et al. SPOP suppresses tumorigenesis by regulating hedgehog/Gli2 signaling pathway in gastric cancer. J Exp Clin Cancer Res 2014; 33: 75.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Xu J, Wang F, Jiang H, Jiang Y, Chen J, Qin J . Properties and clinical relevance of speckle-type POZ protein in human colorectal cancer. J Gastrointest Surg 2015; 19: 1484–1496.

    Article  PubMed  Google Scholar 

  40. Zhi X, Tao J, Zhang L, Tao R, Ma L, Qin J . Silencing speckle-type POZ protein by promoter hypermethylation decreases cell apoptosis through upregulating Hedgehog signaling pathway in colorectal cancer. Cell Death Dis 2016; 7: e2569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ding D, Song T, Jun W, Tan Z, Fang J . Decreased expression of the SPOP gene is associated with poor prognosis in glioma. Int J Oncol 2015; 46: 333–341.

    Article  CAS  PubMed  Google Scholar 

  42. Hubbard GK, Mutton LN, Khalili M, McMullin RP, Hicks JL, Bianchi-Frias D et al. Combined MYC activation and Pten loss are sufficient to create genomic instability and lethal metastatic prostate cancer. Cancer Res 2015; 76: 283–292.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Priolo C, Pyne S, Rose J, Regan ER, Zadra G, Photopoulos C et al. AKT1 and MYC induce distinctive metabolic fingerprints in human prostate cancer. Cancer Res 2014; 74: 7198–7204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pellakuru LG, Iwata T, Gurel B, Schultz D, Hicks J, Bethel C et al. Global levels of H3K27me3 track with differentiation in vivo and are deregulated by MYC in prostate cancer. Am J Pathol 2012; 181: 560–569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nelson WG, De Marzo AM, Yegnasubramanian S . USP2a activation of MYC in prostate cancer. Cancer Discov 2012; 2: 206–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jenkins RB, Qian J, Lieber MM, Bostwick DG . Detection of c-myc oncogene amplification and chromosomal anomalies in metastatic prostatic carcinoma by fluorescence in situ hybridization. Cancer Res 1997; 57: 524–531.

    CAS  PubMed  Google Scholar 

  47. Fleming WH, Hamel A, MacDonald R, Ramsey E, Pettigrew NM, Johnston B et al. Expression of the c-myc protooncogene in human prostatic carcinoma and benign prostatic hyperplasia. Cancer Res 1986; 46: 1535–1538.

    CAS  PubMed  Google Scholar 

  48. Fan L, Peng G, Sahgal N, Fazli L, Gleave M, Zhang Y et al. Regulation of c-Myc expression by the histone demethylase JMJD1A is essential for prostate cancer cell growth and survival. Oncogene 2015; 35: 2441–2452.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Sun C, Dobi A, Mohamed A, Li H, Thangapazham RL, Furusato B et al. TMPRSS2-ERG fusion, a common genomic alteration in prostate cancer activates C-MYC and abrogates prostate epithelial differentiation. Oncogene 2008; 27: 5348–5353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang C, Zhang S, Zhang Z, He J, Xu Y, Liu S . ROCK has a crucial role in regulating prostate tumor growth through interaction with c-Myc. Oncogene 2014; 33: 5582–5591.

    Article  CAS  PubMed  Google Scholar 

  51. Fromont G, Godet J, Peyret A, Irani J, Celhay O, Rozet F et al. 8q24 amplification is associated with Myc expression and prostate cancer progression and is an independent predictor of recurrence after radical prostatectomy. Hum Pathol 2013; 44: 1617–1623.

    Article  CAS  PubMed  Google Scholar 

  52. Koh CM, Bieberich CJ, Dang CV, Nelson WG, Yegnasubramanian S, De Marzo AM . MYC and prostate cancer. Genes Cancer 2010; 1: 617–628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen H, Liu W, Roberts W, Hooker S, Fedor H, DeMarzo A et al. 8q24 allelic imbalance and MYC gene copy number in primary prostate cancer. Prostate Cancer Prostatic Dis 2010; 13: 238–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pomerantz MM, Beckwith CA, Regan MM, Wyman SK, Petrovics G, Chen Y et al. Evaluation of the 8q24 prostate cancer risk locus and MYC expression. Cancer Res 2009; 69: 5568–5574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Blattner M, Lee DJ, O'Reilly C, Park K, MacDonald TY, Khani F et al. SPOP mutations in prostate cancer across demographically diverse patient cohorts. Neoplasia 2014; 16: 14–20.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Brown SD, Moore MW . The International Mouse Phenotyping Consortium: past and future perspectives on mouse phenotyping. Mamm Genome 2012; 23: 632–640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jin C, McKeehan K, Wang F . Transgenic mouse with high Cre recombinase activity in all prostate lobes, seminal vesicle, and ductus deferens. Prostate 2003; 57: 160–164.

    Article  CAS  PubMed  Google Scholar 

  58. Schneider CA, Rasband WS, Eliceiri KW . NIH Image to ImageJ: 25 years of image analysis. Nat Methods 2012; 9: 671–675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Choi N, Zhang B, Zhang L, Ittmann M, Xin L . Adult murine prostate basal and luminal cells are self-sustained lineages that can both serve as targets for prostate cancer initiation. Cancer Cell 2012; 21: 253–265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. He B, Lanz RB, Fiskus W, Geng C, Yi P, Hartig SM et al. GATA2 facilitates steroid receptor coactivator recruitment to the androgen receptor complex. Proc Natl Acad Sci USA 2014; 111: 18261–18266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Coarfa C, Fiskus W, Eedunuri VK, Rajapakshe K, Foley C, Chew SA et al. Comprehensive proteomic profiling identifies the androgen receptor axis and other signaling pathways as targets of microRNAs suppressed in metastatic prostate cancer. Oncogene 2016; 35: 2345–2356.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the joint participation by Adrienne Helis Malvin Medical Research Foundation through its direct engagement in the continuous active conduct of medical research in conjunction with Baylor College of Medicine. This work was also supported by the American Cancer Society RSG-14-218-01-TBG (to NM), the Prostate Cancer Foundation (to BWO and NM); the Conquer Cancer Foundation of the American Society of Clinical Oncology Young Investigator and Career Development Awards (both to NM) and a Developmental Project from SPORE P50CA58183 (NM); the Pilot/Feasibility Program of the Diabetes and Endocrinology Research Center (P30-DK079638) at Baylor College of Medicine (NM), an Alkek Foundation for Molecular Discovery Pilot grant (CC), CPRIT awards RP170295 and RP170005 (CC); NIH R01CA190378 (LX); NIH 5T32CA174647-03 (SK); and NICHD 8818 and Department of Defense Breast Cancer Research Program Innovator Award (BWO). NM is a Dan L Duncan Scholar, a Caroline Wiess Law Scholar and member of the Center for Drug Discovery at Baylor College of Medicine. The authors also acknowledge the assistance of the BCM Genetically Engineered Mouse and Human Tissue Acquisition and Pathology Core, Human Tissue Acquisition and Pathology Core, Integrated Microscopy Core funded via the NIH (DK56338, and CA125123), CPRIT (RP150578), and John S Dunn Gulf Coast Consortium for Chemical Genomics and the Dan L Duncan Cancer Center (supported by the NCI Cancer Center Support Grant P30CA125123).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C Coarfa or N Mitsiades.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, C., Kaochar, S., Li, M. et al. SPOP regulates prostate epithelial cell proliferation and promotes ubiquitination and turnover of c-MYC oncoprotein. Oncogene 36, 4767–4777 (2017). https://doi.org/10.1038/onc.2017.80

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.80

This article is cited by

Search

Quick links