Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stearoyl-CoA-desaturase 1 regulates lung cancer stemness via stabilization and nuclear localization of YAP/TAZ

A Corrigendum to this article was published on 19 June 2017

This article has been updated

Abstract

Recent evidences suggest that stearoyl-CoA-desaturase 1 (SCD1), the enzyme involved in monounsaturated fatty acids synthesis, has a role in several cancers. We previously demonstrated that SCD1 is important in lung cancer stem cells survival and propagation. In this article, we first show, using primary cell cultures from human lung adenocarcinoma, that the effectors of the Hippo pathway, Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), are required for the generation of lung cancer three-dimensional cultures and that SCD1 knock down and pharmacological inhibition both decrease expression, nuclear localization and transcriptional activity of YAP and TAZ. Regulation of YAP/TAZ by SCD1 is at least in part dependent upon β-catenin pathway activity, as YAP/TAZ downregulation induced by SCD1 blockade can be rescued by the addition of exogenous wnt3a ligand. In addition, SCD1 activation of nuclear YAP/TAZ requires inactivation of the β-catenin destruction complex. In line with the in vitro findings, immunohistochemistry analysis of lung adenocarcinoma samples showed that expression levels of SCD1 co-vary with those of β-catenin and YAP/TAZ. Mining available gene expression data sets allowed to observe that high co-expression levels of SCD1, β-catenin, YAP/TAZ and downstream targets have a strong negative prognostic value in lung adenocarcinoma. Finally, bioinformatics analyses directed to identify which gene combinations had synergistic effects on clinical outcome in lung cancer showed that poor survival is associated with high co-expression of SCD1, β-catenin and the YAP/TAZ downstream target birc5. In summary, our data demonstrate for the first time the involvement of SCD1 in the regulation of the Hippo pathway in lung cancer, and point to fatty acids metabolism as a key regulator of lung cancer stem cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Change history

  • 10 August 2017

    This article has been corrected since Advance Online Publication and a corrigendum is also printed in this issue

References

  1. Cantor JR, Sabatini DM . Cancer cell metabolism: one hallmark, many faces. Cancer Discov 2012; 2: 881–898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cairns RA, Harris IS, Mak TW . Regulation of cancer cell metabolism. Nat Rev Cancer 2011; 11: 85–95.

    Article  CAS  PubMed  Google Scholar 

  3. Ntambi JM . Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol. J Lipid Res 1999; 40: 1549–1558.

    CAS  PubMed  Google Scholar 

  4. Castro LF, Wilson JM, Gonçalves O, Galante-Oliveira S, Rocha E, Cunha I . The evolutionary history of the stearoyl-CoA desaturase gene family in vertebrates. BMC Evol Biol 2011; 11: 132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Igal RA . Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Carcinogenesis 2010; 31: 1509–1515.

    Article  CAS  PubMed  Google Scholar 

  6. Scaglia N, Igal RA . Inhibition of stearoyl-CoA desaturase 1 expression in human lung adenocarcinoma cells impairs tumorigenesis. Int J Oncol 2008; 33: 839–850.

    CAS  PubMed  Google Scholar 

  7. Roongta UV, Pabalan JG, Wang X, Ryseck RP, Fargnoli J, Henley BJ et al. Cancer cell dependence on unsaturated fatty acids implicates stearoyl-CoA desaturase as a target for cancer therapy. Mol Cancer Res 2011; 9: 1551–1561.

    Article  CAS  PubMed  Google Scholar 

  8. Mason P, Liang B, Li L, Fremgen T, Murphy E, Quinn A et al. SCD1 inhibition causes cancer cell death by depleting mono-unsaturated fatty acids. PLoS ONE 2012; 7: e33823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. von Roemeling CA, Marlow LA, Wei JJ, Cooper SJ, Caulfield TR, Wu K et al. Stearoyl-CoA desaturase 1 is a novel molecular therapeutic target for clear cell renal cell carcinoma. Clin Cancer Res 2013; 19: 2368–2380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huang GM, Jiang QH, Cai C, Qu M, Shen W . SCD1 negatively regulates autophagy-induced cell death in human hepatocellular carcinoma through inactivation of the AMPK signaling pathway. Cancer Lett 2015; 358: 180–190.

    Article  CAS  PubMed  Google Scholar 

  11. Byagowi S, Naserpour Farivar T, Najafipour R, Sahmani M, Darabi M, Fayezi S et al. Effect of PPARδ agonist on stearoyl-CoA desaturase 1 in human pancreatic cancer cells: role of MEK/ERK1/2 pathway. Can J Diabetes 2015; 39: 123–127.

    Article  PubMed  Google Scholar 

  12. von Roemeling CA, Marlow LA, Pinkerton AB, Crist A, Miller J, Tun HW et al. Aberrant lipid metabolism in anaplastic thyroid carcinoma reveals stearoyl CoA desaturase 1 as a novel therapeutic target. J Clin Endocrinol Metab 2015; 100: E697–E709.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Belkaid A, Duguay SR, Ouellette RJ, Surette ME . 17β-Estradiol induces stearoyl-CoA desaturase-1 expression in estrogen receptor-positive breast cancer cells. BMC Cancer 2015; 15: 440.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Southam AD, Khanim FL, Hayden RE, Constantinou JK, Koczula KM, Michell RH et al. Drug redeployment to kill leukemia and lymphoma cells by disrupting SCD1-mediated synthesis of monounsaturated fatty acids. Cancer Res 2015; 75: 2530–2540.

    Article  CAS  PubMed  Google Scholar 

  15. Minville-Walz M, Pierre AS, Pichon L, Bellenger S, Fèvre C, Bellenger J et al. Inhibition of stearoyl-CoA desaturase 1 expression induces CHOP-dependent cell death in human cancer cells. PLoS One 2010; 5: e14363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Potze L, Di Franco S, Grandela C, Pras-Raves ML, Picavet DI, van Veen HA et al. Betulinic acid induces a novel cell death pathway that depends on cardiolipin modification. Oncogene 2016; 35: 427–437.

    Article  CAS  PubMed  Google Scholar 

  17. Chen L, Ren J, Yang L, Li Y, Fu J, Li Y et al. Stearoyl-CoA desaturase-1 mediated cell apoptosis in colorectal cancer by promoting ceramide synthesis. Sci Rep 2016; 6: 19665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Noto A, Raffa S, De Vitis C, Roscilli G, Malpicci D, Coluccia P et al. Stearoyl-CoA desaturase-1 is a key factor for lung cancer-initiating cells. Cell Death Dis 2013; 4: e947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mancini R, Giarnieri E, De Vitis C, Malanga D, Roscilli G, Noto A et al. Spheres derived from lung adenocarcinoma pleural effusions: molecular characterization and tumor engraftment. PLoS ONE 2011; 6: e21320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bartucci M, Dattilo R, Moriconi C, Pagliuca A, Mottolese M, Federici G et al. TAZ is required for metastatic activity and chemoresistance of breast cancer stem cells. Oncogene 2015; 34: 681–690.

    Article  CAS  PubMed  Google Scholar 

  21. Piccolo S, Cordenonsi M, Dupont S . Molecular pathways: YAP and TAZ take center stage in organ growth and tumorigenesis. Clin Cancer Res 2013; 19: 4925–4930.

    Article  CAS  PubMed  Google Scholar 

  22. Hayashi H, Higashi T, Yokoyama N, Kaida T, Sakamoto K, Fukushima Y et al. An imbalance in TAZ and YAP expression in hepatocellular carcinoma confers cancer stem cell-like behaviors contributing to disease progression. Cancer Res 2015; 75: 4985–4997.

    Article  CAS  PubMed  Google Scholar 

  23. Cordenonsi M, Zanconato F, Azzolin L, Forcato M, Rosato A, Frasson C et al. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 2011; 147: 759–772.

    Article  CAS  PubMed  Google Scholar 

  24. Piccolo S, Dupont S, Cordenonsi M . The biology of YAP/TAZ: hippo signaling and beyond. Physiol Rev 2014; 94: 1287–1312.

    Article  CAS  PubMed  Google Scholar 

  25. Azzolin L, Panciera T, Soligo S, Enzo E, Bicciato S, Dupont S et al. YAP/TAZ incorporation in the β-catenin destruction complex orchestrates the Wnt response. Cell 2014; 158: 157–157.

    Article  CAS  PubMed  Google Scholar 

  26. Santinon G, Pocaterra A, Dupont S . Control of YAP/TAZ activity by metabolic and nutrient-sensing pathways. Trends Cell Biol 2015; 26: 289–299.

    Article  PubMed  Google Scholar 

  27. Sorrentino G, Ruggeri N, Specchia V, Cordenonsi M, Mano M, Dupont S et al. Metabolic control of YAP and TAZ by the mevalonate pathway. Nat Cell Biol 2014; 16: 357–366.

    Article  CAS  PubMed  Google Scholar 

  28. Yeung B, Yu J, Yang X . Roles of the Hippo pathway in lung development and tumorigenesis. Int J Cancer 2016; 138: 533–539.

    Article  CAS  PubMed  Google Scholar 

  29. Lau AN, Curtis SJ, Fillmore CM, Rowbotham SP, Mohseni M, Wagner DE et al. Tumor-propagating cells and Yap/Taz activity contribute to lung tumor progression and metastasis. EMBO J 2014; 33: 468–481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou Z, Hao Y, Liu N, Raptis L, Tsao MS, Yang X . TAZ is a novel oncogene in non-small cell lung cancer. Oncogene 2011; 30: 2181–2186.

    Article  CAS  PubMed  Google Scholar 

  31. Noguchi S, Saito A, Horie M, Mikami Y, Suzuki HI, Morishita Y et al. An integrative analysis of the tumorigenic role of TAZ in human non-small cell lung cancer. Clin Cancer Res 2014; 20: 4660–4672.

    Article  CAS  PubMed  Google Scholar 

  32. Xie M, Zhang L, He CS, Hou JH, Lin SX, Hu ZH et al. Prognostic significance of TAZ expression in resected non-small cell lung cancer. J Thorac Oncol 2012; 7: 799–807.

    Article  CAS  PubMed  Google Scholar 

  33. Wang Y, Dong Q, Zhang Q, Li Z, Wang E, Qiu X . Overexpression of yes-associated protein contributes to progression and poor prognosis of non-small-cell lung cancer. Cancer Sci 2010; 101: 1279–1285.

    Article  CAS  PubMed  Google Scholar 

  34. Léger S, Black WC, Deschenes D, Dolman S, Falgueyret JP, Gagnon M et al. Synthesis and biological activity of a potent and orally bioavailable SCD inhibitor (MF-438). Bioorg Med Chem Lett 2010; 20: 499–502.

    Article  PubMed  Google Scholar 

  35. Mauvoisin D, Charfi C, Lounis AM, Rassart E, Mounier C . Decreasing stearoyl-CoA desaturase-1 expression inhibits β-catenin signaling in breast cancer cells. Cancer Sci 2013; 104: 36–42.

    Article  CAS  PubMed  Google Scholar 

  36. Rios-Esteves J, Resh MD . Stearoyl CoA desaturase is required to produce active, lipid modified Wnt proteins. Cell Rep 2013; 4: 1072–1081.

    Article  CAS  PubMed  Google Scholar 

  37. Rios-Esteves J, Haugen B, Resh MD . Identification of key residues and regions important for porcupine-mediated Wnt acylation. J Biol Chem 2014; 289: 17009–17019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Meacham CE, Morrison SJ . Tumour heterogeneity and cancer cell plasticity. Nature 2013; 501: 328–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang K, Qi HX, Hu ZM, Chang YN, Shi ZM, Han XH et al. YAP and TAZ take center stage in cancer. Biochemistry 2015; 54: 6555–6566.

    Article  CAS  PubMed  Google Scholar 

  40. Di Agostino S, Sorrentino G, Ingallina E, Valenti F, Ferraiuolo M, Bicciato S et al. YAP enhances the pro-proliferative transcriptional activity of mutant p53 proteins. EMBO Rep 2016; 17: 188–201.

    Article  CAS  PubMed  Google Scholar 

  41. Tirinato L, Liberale C, Di Franco S, Candeloro P, Benfante A, La Rocca R et al. Lipid droplets: a new player in colorectal cancer stem cells unveiled by spectroscopic imaging. Stem Cells 2015; 33: 35–44.

    Article  CAS  PubMed  Google Scholar 

  42. Rappa G, Mercapide J, Anzanello F, Le TT, Johlfs MG, Fiscus RR et al. Wnt interaction and extracellular release of prominin-1/CD133 in human malignant melanoma cells. Exp Cell Res 2013; 319: 810–819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li J, Condello S, Thomes-Pepin J, Ma X, Xia Y, Hurley TD et al. Lipid desaturation is a metabolic marker and therapeutic target of ovarian cancer stem cells. Cell Stem Cell 2016; 20: 303–314.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Roscilli G, De Vitis C, Ferrara FF, Noto A, Cherubini E, Ricci A et al. Human lung adenocarcinoma cell cultures derived from malignant pleural effusions as model system to predict patients chemosensitivity. J Transl Med 2016; 14: 61.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Noto A, De Vitis C, Roscilli G, Fattore L, Malpicci D, Marra E et al. Combination therapy with anti-ErbB3 monoclonal antibodies and EGFR TKIs potently inhibits non-small cell lung cancer. Oncotarget 2013; 4: 1253–1265.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lepage G, Roy CC . Improved recovery of fatty acid through direct transesterification without prior extraction or purification. J Lipid Res 1984; 25: 1391–1396.

    CAS  PubMed  Google Scholar 

  47. Amelio I, Tsvetkov PO, Knight RA, Lisitsa A, Melino G, Antonov AV . SynTarget: an online tool to test the synergetic effect of genes on survival outcome in cancer. Cell Death Differ 2016; 23: 912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Antonov AV . BioProfiling. de: analytical web portal for high-throughput cell biology. Nucleic Acids Res 2011; 39 (web server issue): W323–W327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work was supported by Italian Association for Cancer Research (AIRC) grant IG17009 to RM, and grant IG15216 to GC. Fondo di Ricerca di Ateneo 2014 (C26A142LZ8) and by POR FESR Lazio 2007/2013 to RM. We are grateful to Stefano Piccolo for kindly providing TOP-FLASH reporter plasmid. We acknowledge Claudia Cippittelli for technical support on immunohistochemistry. We acknowledge Italian Association for Cancer Research (AIRC) Special Program Molecular Clinical Oncology ‘5 per mille’ (grant no. 10016), AIRC IG (grant no.17659) and the Italian Ministry of Health (RF-2011-02346976), to GDS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Ciliberto.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noto, A., De Vitis, C., Pisanu, M. et al. Stearoyl-CoA-desaturase 1 regulates lung cancer stemness via stabilization and nuclear localization of YAP/TAZ. Oncogene 36, 4573–4584 (2017). https://doi.org/10.1038/onc.2017.75

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.75

This article is cited by

Search

Quick links