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JNKs function as CDK4-activating kinases by
phosphorylating CDK4 and p21
B Colleoni1,4, S Paternot1,4, JM Pita1, X Bisteau1,5, K Coulonval1, RJ Davis2,3, E Raspé1 and PP Roger1

Cyclin D-CDK4/6 are the first cyclin-dependent kinase (CDK) complexes to be activated by mitogenic/oncogenic pathways. They
have a central role in the cell multiplication decision and in its deregulation in cancer cells. We identified T172 phosphorylation of
CDK4 rather than cyclin D accumulation as the distinctly regulated step determining CDK4 activation. This finding challenges the
view that the only identified metazoan CDK-activating kinase, cyclin H-CDK7-Mat1 (CAK), which is constitutively active, is
responsible for the activating phosphorylation of all cell cycle CDKs. We previously showed that T172 phosphorylation of CDK4 is
conditioned by an adjacent proline (P173), which is not present in CDK6 and CDK1/2. Although CDK7 activity was recently shown to
be required for CDK4 activation, we proposed that proline-directed kinases might specifically initiate the activation of CDK4. Here,
we report that JNKs, but not ERK1/2 or CAK, can be direct CDK4-activating kinases for cyclin D-CDK4 complexes that are inactivated
by p21-mediated stabilization. JNKs and ERK1/2 also phosphorylated p21 at S130 and T57, which might facilitate CDK7-dependent
activation of p21-bound CDK4, however, mutation of these sites did not impair the phosphorylation of CDK4 by JNKs. In two
selected tumor cells, two different JNK inhibitors inhibited the phosphorylation and activation of cyclin D1-CDK4-p21 but not the
activation of cyclin D3-CDK4 that is mainly associated to p27. Specific inhibition by chemical genetics in MEFs confirmed the
involvement of JNK2 in cyclin D1-CDK4 activation. Therefore, JNKs could be activating kinases for cyclin D1-CDK4 bound to p21, by
independently phosphorylating both CDK4 and p21.
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INTRODUCTION
The eukaryotic cell cycle depends on the sequential formation
and activation of different cyclin-dependent kinase (CDK)
complexes.1,2 In response to the mitogenic/oncogenic signaling,
cell cycle commitment at the restriction (R) point in the G1 phase
is initiated by inactivating phosphorylations of the central cell
cycle/tumor suppressor Rb by CDK4 and CDK6.3–5 Rb phosphor-
ylation is maintained by a positive-feedback loop linking Rb to
E2F-dependent transcription of cyclin E, that in turn activates
CDK2 and leads to further phosphorylation of Rb.6 This feedback,
coupled with self-induction of E2F and mutual inhibition between
cyclin E-CDK2 and p27Kip1, generates a bistable Rb-E2F switch that
converts graded mitogen inputs into all-or-none E2F responses
and finally into the cell cycle commitment.7 Because the frequent
deregulation of CDK4 in cancer often leads to addiction to its
activity, CDK4 is emerging as a particularly promising therapeutic
target.8–11 Specific CDK4/6 inhibitors are being tested against
most cancers12,13 and PD0332991 (Palbociclib) received a first
approval by the FDA as a first-line treatment combined with
endocrine therapy of advanced breast cancers.12

The activation of CDK4 differs from the activation of the other
cell cycle CDKs in several respects. It requires the binding to a
D-type cyclin, which is opposed by INK4 CDK inhibitors such as
p16, and then an activating phosphorylation in the T-loop
at T172.5,14–16 However, in contrast to CDK2 and CDK1,17

CDK4 activation is not restricted by stoichiometric inhibitory
phosphorylations.5,14,15 Moreover, we found in a variety of cell
models and regulations that its activating phosphorylation is
highly regulated, determining CDK4 activity.15,18–23 The effects of
p21 and p27 on CDK4/6 activation are complex and remain
debated. p21 is the main transcriptional target involved in
replicative senescence and p53-dependent cell cycle inhibition
in response to DNA damage, however, it is also transiently
induced by mitogenic stimuli.24 Although p21 and p27 potently
inhibit CDK2, they stabilize cyclin D-CDK4/6 complexes and target
them to nuclei, but they can also inhibit CDK4/6 activity.15,25,26

How can p21 and p27 shift from an inhibitory to an activation
mode is still debated. One possibility is related to differences in
the stoichiometry of the binding of these proteins to cyclin-CDK
complexes.15,25,27 Phosphorylations of p21 and p27 have also
emerged as potential mechanisms for CDK regulation.28–31 We
recently demonstrated that S130 phosphorylation of p21 inside
the cyclin D-CDK4/6 complexes is catalyzed by other active
CDK4/6 and CDK2 complexes, and is required for CDK7-dependent
T172 phosphorylation of p21-bound CDK4 complexes.23

The distinct and critical regulation of CDK4 T172 phosphoryla-
tion sharply contrasts with the prevalent ‘textbook’ concept
stating that the CDK-activating kinase (CAK, formed by the nuclear
cyclin H-CDK7-Mat1 complex) is the only kinase performing the
activating phosphorylations in the T-loops of the different CDKs,
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including CDK4 and CDK6.32–34 CAK is constitutively active and
weakly or not regulated during the cell cycle and in response to
mitogenic stimulations,15,35 even when assayed on CDK4
complexes.19,20,23,36 The regulation of CDK4 phosphorylation is
partially different for cyclin D1-CDK4 and cyclin D3-CDK4.20,37,38

Moreover, it affects CDK4 but not the much related CDK6, which is
poorly phosphorylated and active in several cells.15,21 We
explained this difference by the absence of a conserved adjacent
proline that is uniquely present in the phospho-acceptor domain
of CDK4 (QMALTPVVVT in CDK4 versus QMALTSVVVT in CDK6).21

Indeed, mutations of proline 173 did not adversely affect cyclin
D3-CDK4 activation by CAK in vitro, but in cells these mutations
abolished CDK4 T172 phosphorylation and activity. Conversely,
substituting a proline to the corresponding serine 178 of CDK6
enforced its complete T177 phosphorylation and dramatically
increased its activity.21 These results, together with the fact that
CDK4 is a poor substrate of CAK in vitro in comparison with other
CDKs including CDK6,15,21,39,40 led us to propose that in intact cells
CDK4 might not be phosphorylated by CDK7, but more likely
by other, presumably proline-directed, kinase(s) (PDKs).16,21

Nevertheless, cyclin H-CDK7-Mat1 phosphorylates several non-
CDK substrates at T/S-P motifs and might be considered as a
‘conditional’ PDK.40 More recent experiments by our group and
the Rob Fisher lab using HCT116 cells engineered to express an
‘analog-sensitive’ version of CDK7 that can be selectively
inhibited41 demonstrated in these specific cells that the involve-
ment of CDK7 in CDK4 activation is crucial,23,33 as well as
unexpectedly complex and partly indirect,23 and that non-CDK7
CDK4-activating kinase(s) exist.23

In this study, we sought to identify new CDK4-activating
kinases. S/T-P motifs (such as T172 of CDK4 and S130 of p21) are
more likely to be phosphorylated by several PDKs.42 The kinome
comprises about 70 PDKs (our Phosphosite database analysis).
Most of them belong to the CDK/MAPK/GSK3/CLK group, which
includes MAPKs, CDKs, GSKs, HIPKs and subfamilies related to
MAPKs and CDKs. We reasoned that CDK4-activating kinase
candidates should be required for G1 phase progression in some
cells, and, in addition, should interact with one of the proteins of
the CDK4 complexes. C-Jun N-terminal kinases (JNKs; also known
as SAPKs and MAPK8–10)43 are required for proliferation of some
tumor cells44–47 and murine embryo fibroblasts (MEFs)48 and they
are oncogenic in several tumor models.49–52 Moreover, JNKs bind
p2153–55 and JNK2 was identified as a CDK4 interactor in a yeast
two-hybrid screen (patent US 5691147, CDK4 binding assay,
Giulio Draetta and Jeno Gyuris, 1997). Here, we demonstrate that
JNK1 and JNK2 could be bona fide activating kinases for
p21-bound cyclin D1-CDK4, by independently phosphorylating
CDK4 and p21.

RESULTS
JNK1 and JNK2 phosphorylate p21-bound CDK4 and p21 in vitro
We first evaluated whether JNKs and other MAPKs could
phosphorylate CDK4. As cyclin D-CDK4 complexes exist mostly
during the G1 phase in interaction with p21 (which stabilizes
them), cyclin D1-CDK4-p21 and cyclin D3-CDK4-p21 complexes
were produced in CHO cells by transfecting the corresponding
human cDNA expression vectors. The CDK4 complexes were
immunoprecipitated (Ip) using antibodies directed against cyclin
D1 or cyclin D3 and incubated with ATP and different recombinant
kinases (Figure 1). The phosphorylation of CDK4 was revealed by
immunodetection of phosphorylated and non-phosphorylated
CDK4 forms separated by 2D-gel electrophoresis.15 Importantly,
before incubation with kinases, CDK4 bound to p21 and cyclin D1
or cyclin D3 was only faintly phosphorylated in CHO cells that
express high levels of p21.23 This was in contrast with the high
CDK4 phosphorylation level observed when cyclin D3-CDK4

complexes were produced in the absence of a p21 expression
vector (compare the ‘no kinase’ panels in Figures 1a and c). As
shown in Figure 1a, JNK1, JNK2 and more weakly p38α efficiently
phosphorylated CDK4 bound to p21 and cyclin D1 or cyclin D3.
JNK3 only phosphorylated cyclin D1-bound CDK4. By contrast,
ERK1 and ERK2 were unable to phosphorylate CDK4 in those
conditions (Figure 1a). CDK4 was phosphorylated only on T172, as
indicated by detection with a T172-phosphospecific antibody
(Figure 1a) and by lack of phosphorylation of T172A CDK4 by JNK1
(Figure 1b).
In these experiments, recombinant CAK (cyclin H-CDK7-Mat1)

was unable to phosphorylate CDK4 in cyclin D-CDK4 complexes
bound to p21 (Figure 1a). However, the CAK preparation was
active in the same experiments, as it efficiently phosphorylated
cyclin D3-CDK4 complexes that were produced in CHO cells in the
absence of p21 and dephosphorylated by λ-phosphatase
(Figure 1c). JNK1 only faintly phosphorylated CDK4 in this last
condition (Figure 1c), suggesting that the phosphorylation of
CDK4 by JNK1 observed in Figure 1a required the binding of cyclin
D3-CDK4 complexes to p21. As T170 phosphorylation of CDK7 was
reported to be important for CDK4 phosphorylation by CAK,33 we
verified that CDK7 was fully phosphorylated at T170 in the
CAK preparation, using 2D-gel electrophoresis and a T170-
phosphospecific antibody23 (not shown). Finally, we and others
previously observed that activation and phosphorylation of cyclin
D3-CDK4 by CAK in vitro is rather inefficient and requires millimolar
concentrations of ATP, whereas lower ATP concentrations suffice
for phosphorylating CDK2 and CDK6 in the same conditions.15,21,39

Here, JNKs phosphorylated p21-bound cyclin D-CDK4 at lower
concentrations of ATP (50–250 μM, Supplementary Figure S1). In
conclusion, JNKs can phosphorylate CDK4 in various in vitro
conditions that do not support phosphorylation of CDK4 by CAK.
In the same experiments, we observed that the different MAPKs,

including JNK1-3, ERK1, ERK2 and p38α phosphorylated p21 inside
the cyclin D1-CDK4 and cyclin D3-CDK4 complexes (Figure 2).
p21 contains three S/T-P motifs (T57, S98, S130). Using 2D-gel
separations, we previously characterized the migration of p21
forms comprising the phosphorylations at S130 and/or S98, which
were performed in vitro by the different complexes of CDK4, CDK6
and CDK2.23 Here, we observed that the different MAPKs also
phosphorylate S130 and S98 residues (Figure 2a), the identity of
which was confirmed by the disappearance of the respective spots
in S98A and S130A mutants (Supplementary Figure S2A, as also
seen in Figure 3). We previously showed that the abundant S130
phosphorylation observed in p21 bound to cyclin D-CDK4
complexes is required for CDK7-dependent T172 phosphorylation
of CDK4 inside these complexes.23 Therefore, S130 phosphoryla-
tion of p21 by the different MAPKs, including JNKs and ERKs,
might facilitate the CAK-mediated activation of p21-bound
cyclin D-CDK4. CAK also weakly phosphorylated p21 in those
experiments, but not at S130, S98 or T57 (data not shown, also
seen in Bisteau et al.,23).
We also analyzed the in vitro phosphorylation of p21 that was

produced alone in CHO cells transfected with human p21 cDNA in
the absence of expression vectors for CDK4 and cyclins D. In
contrast to p21 bound to cyclin D-CDK4, ‘free’ p21 was
phosphorylated by JNK2 and ERK2 not only at S130 and S98,
but also and even more efficiently at T57 (Figure 2b;
Supplementary Figure S2). As shown by detection of additional
p21 spots in 2D-gel immunoblots, analysis of the phosphorylation
of the T57A mutant and use of a T57-phosphospecific antibody,
almost all detected p21 forms were phosphorylated at T57 after
incubation with ERK2, JNK1 or JNK2 (Figure 2b; Supplementary
Figure S2). The T57 residue lies within the CDK-binding domain of
p21,56,57 which could explain why this residue was not effectively
accessible for phosphorylation in p21-CDK4 complexes. Mutations
in the CDK-binding domain of p21 increase the activity of
p21-bound cyclin D-CDK4 complexes.58 Moreover, we previously
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observed that the phosphomimetic T57D mutation of p21
facilitates the T172 phosphorylation of p21-bound CDK4 by CAK
in vitro (Supplementary Figure S8 in Bisteau et al.,23). Therefore, we
further evaluated whether T57 phosphorylation could also affect
the activity and T172 phosphorylation of p21-bound CDK4 complexes
in vivo. As shown in Figure 2c and Supplementary Figure S2C, the
T57D mutation of p21 markedly increased in transfected CHO cells
both the Rb-kinase activity and the phosphorylation of CDK4 in
complexes Ip with p21, cyclin D1 or cyclin D3 antibodies.
On the basis of the above-described observations, phosphor-

ylations of p21 at S130 and/or T57 by several MAPKs might
facilitate the phosphorylation and activation of CDK4 complexes
by CAK. So we evaluated whether they are similarly required for
in vitro phosphorylation of p21-bound CDK4 by JNKs. Cyclin
D1-CDK4 complexes containing wild-type p21 or each of its
phosphorylation mutants were produced by transfection of CHO
cells. As shown in Figure 3, none of these mutations of p21
including T57A, S130A, S98A and double mutation T57A/S130A
impaired the in vitro phosphorylation of CDK4 by JNK1 and JNK2.
Collectively, these experiments together with our previous
observations indicate that JNKs might activate cyclin D-CDK4
complexes stabilized by p21, by acting as direct CDK4-activating

kinases, and also by independently phosphorylating two critical
residues of p21 involved in CAK-dependent activation of CDK4.

Inhibition of JNKs decreases cell proliferation, Rb-kinase activity
and CDK4 phosphorylation in selected tumor cell lines
We next evaluated whether JNKs are involved in CDK4 activation
in vivo. JNKs have various oncogenic and tumor suppressor roles,
depending on the context, expression of different JNK isoforms,
and even on the approach used to interfere with their expression
or activity.48,59–62 We selected two cell lines that reportedly
depend on JNKs for proliferation: glioblastoma T98G cells44 and
breast carcinoma MCF-7 cells.47 To inhibit JNK activity, we used
the anthrapyrazolone SP600125, one of the most studied ATP-
competitive JNK inhibitors.63 To circumvent specificity issues that
are known with this inhibitor,64 we also used the recently
developed JNK-IN-8 inhibitor that forms a covalent bond with a
conserved cysteine uniquely found in the ATP site of JNKs.65,66

Both inhibitors sustainably inhibited c-Jun phosphorylation
(Supplementary Figures S3 and S4B) and markedly inhibited the
serum-stimulated DNA synthesis in T98G and MCF-7 cells
(Figure 4a; Supplementary Figure S4A).
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Figure 1. JNKs phosphorylate p21-bound CDK4 in vitro, but ERK1/2 and CAK do not. (a, b) CHO cells were transfected with plasmids encoding
p21, cyclin D1 or cyclin D3 and CDK4 (a) or T172A CDK4 (b). Cell lysates were Ip with cyclin D1 or cyclin D3 antibodies. The
co-immunoprecipitates were incubated with the indicated recombinant kinases and ATP, separated by 2D-gel electrophoresis, and
immunodetected with antibodies against CDK4 or its T172 phosphorylation (p-CDK4(T172)). The experiment in a was reproduced four times
using cyclin D1-CDK4-p21 complexes and three times using cyclin D3-CDK4-p21 complexes, with similar results. (c) As a positive control for
CAK activity in the experiment shown in a, Ip cyclin D3-CDK4 complexes (Ip cyclin D3) from CHO cells transfected only with plasmids
encoding CDK4 and cyclin D3 were incubated with ATP and CAK or JNK1, and analyzed by 2D-gel electrophoresis and CDK4
immunodetection. Because cyclin D3-CDK4 complexes produced in CHO cells in the absence of p21 expression are phosphorylated at T172,
they were dephosphorylated by incubation with λ phosphatase (+λ PPase) before incubation with kinases (c). Black arrows indicate the
increased abundance of the T172-phosphorylated form of CDK4.
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with similar results.
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In these experiments, we analyzed the effect of JNK inhibition
on the composition, Rb-kinase activity and T172 phosphorylation
of CDK4 complexes, which were Ip using antibodies against
cyclin D1, cyclin D3, or p21 (Figures 4b and c; Supplementary
Figures S4C and D). CDK4 complexes Ip by cyclin D1 and p21
antibodies were studied 8 h after serum stimulation, that is, before
degradation of p21 and cyclin D1 in the S-phase. Cyclin D3-CDK4
complexes become more active later and were studied 16 h after
stimulation. Serum stimulation in T98G and MCF-7 cells much
increased the abundance of cyclin D1 and p21 and of CDK4
complexes containing these proteins (Figure 4b; Supplementary
Figures S3 and S4C). As we had generally observed,15,23,38 the
CDK4 complexes Ip by the p21 antibody were as active as those Ip
by the cyclin D1 antibody. CDK4 was similarly phosphorylated in
both immunoprecipitations (Figure 4c). Serum stimulation also
induced the appearance of a p21 form that comigrates exactly
with S130-phosphorylated p21 (Figure 4d; Supplementary
Figure S4E). These results extend to T98G and MCF-7 cells our
observation of a close relationship between the S130 phosphor-
ylation of p21 and the T172 phosphorylation and activation of
p21-bound CDK4.23

Owing to the inhibition of c-Jun phosphorylation and AP-1
transcriptional activity,43,67 SP600125 and JNK-IN-8 were expected
to inhibit the serum-stimulated accumulation of cyclin D1.
However, cyclin D1 accumulation was only partially affected
(Supplementary Figures S3 and S4B). Both JNK inhibitors also
partially reduced the accumulation of cyclin D1-CDK4 complexes
in the G1 phase (8 h time point) in T98G cells (Figure 4b). The
activity of CDK4 complexes Ip by cyclin D1 and p21 antibodies was
even more strongly inhibited in T98G and MCF-7 cells, as shown

by comparison and quantitation of detections of Rb-kinase activity
and CDK4 in cyclin D1 and p21 immunoprecipitations in Figure 4b
and Supplementary Figure S4C. This inhibition correlated with a
proportional reduction of the phosphorylation of CDK4 in these
complexes (Figure 4c; Supplementary Figure S4D). Both drugs also
inhibited the phosphorylation of p21 (Figure 4d; Supplementary
Figure S4E).
Intriguingly, such inhibitions by SP600125 and JNK-IN-8 of CDK4

phosphorylation and activity were not observed in cyclin D3
immunoprecipitations, in neither T98G (Figure 4b and c) nor
MCF-7 cells (Supplementary Figures S4C and D). At the 16 h time
point, cyclin D3-CDK4 complexes were poorly associated with p21.
Instead they contained an important presence of p27 (Figure 4b;
Supplementary Figure S4C). In vitro, JNK1 was unable to
phosphorylate CDK4 in complexes Ip by a p27 antibody from
unstimulated T98G cells (Figure 4e). Thus, the different effects of
JNK inhibition in the cyclin D1-CDK4 and cyclin D3-CDK4
complexes could depend on their association with p21 or p27.
Collectively, the above-described experiments show that two very
different JNK inhibitors significantly decrease the entry into cell
cycle, and the activity and phosphorylation of p21-bound cyclin
D1-CDK4. These findings underlie a major involvement of JNKs in
cyclin D1-CDK4 activation in T98G and MCF-7 cells.
We next wanted to verify the effects of JNK inhibition in the

activation of ectopic cyclin D1-CDK4-p21 complexes in transfected
CHO cells. Indeed, this experimental cell model was very useful to
demonstrate the importance of the proline 173 residue of CDK4,21

and to characterize the relationship between T172 phosphoryla-
tion of CDK4 and S130 phosphorylation of p21.23 As previously
shown in this system,23 the phosphorylation of both CDK4 and
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p21 requires that p21 expression is maintained at a concentration
that does not exceed the p21-binding capacity of cyclin D-CDK4.
This was achieved by diluting the p21 expression plasmid by a
factor of 10 relative to expression vectors of cyclin D1 and CDK4
(Figure 5). Because the S130 phosphorylation of p21 is also
performed by CDK2 to allow the CAK/CDK7-dependent phosphor-
ylation of CDK4,23 we tested the effect of JNK-IN-8 in the presence
or absence of R-roscovitine, which inhibits both CDK2 and
CDK7.68,69 As shown in Figures 5b and c, in the absence of
roscovitine, JNK-IN-8 partly inhibited the phosphorylation of CDK4
and the activation of cyclin D1-CDK4-p21 complexes. Roscovitine
used alone did not reduce the S130 phosphorylation of p21, but it
partly inhibited CDK4 phosphorylation (Figure 5c). The combina-
tion of JNK-IN-8 and roscovitine abrogated the phosphorylation of
p21 and induced a more complete inhibition of CDK4 phosphor-
ylation (Figure 5c). These results are consistent with a model
implying the cooperation of different kinases in the activation of
CDK4, including JNKs and CDK2 that allows the activation of CDK4
by CDK7 via S130 phosphorylation of p21.

Cell cycle entry and CDK4 T172 phosphorylation are reduced by
specific inhibition of JNK2 in MEFs
To definitively demonstrate the effect of specific inhibition of JNKs
on the activation of cyclin D1-CDK4 complexes using a chemical
genetic approach, we used MEFs in which both alleles of JNK1
are removed and in which the ATP-binding pocket of JNK2 is
enlarged by replacing methionine-108 with a glycine in both
alleles (JNK1− /− JNK2MG/MG), resulting in sensitization to inhibition
by bulky analogs of ATP such as 3MB-PP1.48,70 3MP-PP1 treatment
indeed inhibited the serum-stimulated phosphorylation of c-Jun
only in JNK1− /− JNK2MG/MG cells but not in wild-type cells
(Figure 6a) as described.48 In wild-type, JNK1− /− JNK2+/+ and
JNK1− /− JNK2MG/MG cell lines, DNA synthesis was maximal after
24 h of serum stimulation. It was significantly reduced by
continuous treatment with SP600125 and even more by JNK-
IN-8. The same treatment with 3MB-PP1 only inhibited DNA
synthesis in JNK1− /− JNK2MG/MG cells (Figure 6b), confirming that
specific JNK2 inhibition decreases cell proliferation.48 This effect
persisted for at least two successive cell cycles (Figure 6c).
Interestingly, changes in mRNAs of cyclins (including cyclin D1)

do not account for the inhibition of cell cycle by specific JNK2
inhibition in JNK1− /− JNK2MG/MG cells.48 CDK4 phosphorylation
was analyzed in cyclin D1 immunoprecipitates from the three cell
lines. After 2D-gel electrophoresis, CDK4 was immunodetected
using antibodies directed against total CDK4 or T172-
phosphorylated CDK4. 3MB-PP1 decreased the proportion of the
T172-phosphorylated form of cyclin D1-bound CDK4 only in
JNK1− /− JNK2MG/MG cells (Figure 7). JNK2 is thus a positive
regulator of T172 phosphorylation of cyclin D1-CDK4, acting at
least in part as a direct CDK4 kinase according to our in vitro
analyses.

DISCUSSION
Whether only one CDK-activating kinase is responsible for the
T-loop phosphorylation of the different cell cycle CDKs in animal
cells has been intensely debated for two decades.16,23,33,34,39,71–74

As summarized in the Introduction, many observations are difficult
to reconcile with the concept of only one CAK for all the cell cycle
CDKs including CDK4.16 However, a chemical genetic approach to
selectively inhibit CDK7 activity demonstrated in HCT116 cells a
strong involvement of CDK7 in the activating phosphorylation of
both CDK4 and CDK6,23,33 as well as other CDKs.41 To explain the
specific regulation of CDK4 phosphorylation, Fisher’s group
showed that CDK7 needs to be phosphorylated on its T-loop at
T170 to be able to phosphorylate CDK4, and claimed that this
phosphorylation (by an undefined kinase) is induced by mitogenic

signaling.33 However, in the same cells, a thorough analysis by
2D-gel separation of cyclin H-CDK7 and detection by a T170-
phosphospecific antibody showed us that all the cyclin H-bound
CDK7 was phosphorylated at T170, even in serum-deprived cell
conditions, and that Ip CDK7 was constitutively active when
assayed on cyclin D3-CDK4 (Supplementary Figure S10 in Bisteau
et al.,23). Instead, we observed that CDK7-dependent phosphor-
ylation of CDK4 depends on S130 phosphorylation of cyclin D/
CDK4-bound p21 by other active CDK4 and CDK2 complexes (the
activity of which depends on CDK7).23 This situation generates
positive-feedback loops to amplify and sustain CDK4 activation, Rb
inactivation and R point passage.23 This raised the question of the
initiating mechanisms that engage this positive-feedback system,
and we proposed that other PDK(s) could be responsible for the
initial CDK7-independent phosphorylation of CDK4 and/or p21 in
response to mitogenic stimulation.16,21,23

Here, we identified JNK1, JNK2 and possibly JNK3 as such
initiating CDK4-activating kinases and demonstrated in selected
tumor cell lines, MEFs and transfected CHO cells that inhibition of
JNKs, including specific inhibition of JNK2 activity by a chemical
genetic approach,48 reduced the phosphorylation and activation
of cyclin D1-CDK4 complexes and cell cycle entry. This in vivo
effect of JNK inhibitors is very specific because the phosphoryla-
tion and activation of cyclin D3-CDK4 complexes were unaffected.
While CAK (cyclin H-CDK7-Mat1) is unable to phosphorylate the
T-loop of cyclin-CDK4 complexes when they are stabilized by
unphosphorylated p21, JNKs did it. This activity of JNKs was
also specific as other related PDKs, including ERK1 and ERK2
(this study) or the different cyclin complexes of CDK2, CDK4 or
CDK623 cannot phosphorylate CDK4 in the same in vitro condi-
tions. The specificity of the phosphorylation of p21-bound CDK4
by JNKs could be because of the reported interaction of JNKs with
both p21 and CDK4, as JNK1 readily phosphorylated cyclin D3-
CDK4 bound to p21, but much less efficiently when cyclin D3-
CDK4 was not associated to p21 (Figure 1c), and not at all when
this CDK4 complex was bound to p27 (Figure 4e). Therefore, JNK1
and JNK2 might be specialized in the activation of cyclin D-CDK4
complexes that are stabilized by p21.
In addition to directly phosphorylating p21-bound CDK4

independently of phosphorylations of p21, the JNKs and other
MAPKs (including ERK1, ERK2 and p38α) phosphorylated p21 at its
three S/T-P motifs, in agreement with previous reports.75–77 The
S130 phosphorylation of p21 observed in the cyclin D1-CDK4
complex is also catalyzed by CDK2,23,78,79 and CDK4 and CDK6.23

We found this phosphorylation to be required for CDK7-
dependent phosphorylation and activation of p21-bound cyclin D-
CDK4.23 The T57 phosphorylation of p21 in its CDK-binding
domain, performed in vitro by JNKs, ERK1/2 and p38α, might also
be critical in CDK4 activation. Indeed, we previously observed that
the phosphomimetic T57D mutation facilitates the phosphoryla-
tion of p21-bound CDK4 by CAK/CDK7,23 and we observed here
that the T57D mutation neutralizes the inhibitory effect of p21 on
both the T172 phosphorylation and activity of p21-bound cyclin
D-CDK4 complexes. S130A and S130A/T57A mutations of p21
were previously reported to block cell cycle progression at the G1/
S transition.77,80 In T98G cells, phosphorylations of p21 by ERK1
and ERK2 at both S130 and T57 might also explain the partial
dependence of CDK4 phosphorylation and activity on MEK
activity.19 Like others,75 we failed to detect an abundant presence
of the T57 phosphorylation in vivo (negative data not shown),
because this site is inaccessible for phosphorylation in the p21
stabilized in cyclin D-CDK4 complexes (Figure 2b), and possibly
because of technical limitations (insufficient reactivity of the T57-
phosphospecific p21 antibody and partly overlapping migration of
T57-monophosphorylated p21 and more abundant S130-
phosphorylated p21 in 2D-gels). By contrast, the S130 phosphor-
ylation is the most abundant phosphorylation of p21 in the G1
phase.23 We observed that JNK inhibition in vivo prevented the
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appearance of this phosphorylated form in both T98G and MCF-7
cells. Interestingly, S130 phosphorylation of p21 is also critical
because it forms a phosphodegron recognized by the SCF/Skp2
ubiquitin ligase complex to signal the proteasomal degradation of
cyclin/CDK-bound p21, which is required for facilitating CDK2
activation and S-phase entry78,79,81 (this mechanism would not
prevent the accumulation of S130-phosphorylated p21 in the G1
phase because at this stage Skp2 levels are kept low by
degradation catalyzed by APC-Cdh1).81

The T172 phosphorylation of CDK4 is particularly unstable,23,33

indicating that it requires a sustained activity of the responsible
kinase(s). The present data, together with our previous observa-
tions, suggest a model in which different CDK4-activating kinases,
including JNKs and CAK/CDK7, would act successively and
cooperate to initiate, maintain and amplify the activation of
CDK4, and to generate the cell cycle decision. This model is
illustrated and detailed in Figure 8 and its legend. By separately
phosphorylating CDK4 at T172 and p21 at S130 and possibly at
T57, JNKs would initiate feedback mechanisms involving further
phosphorylation at S130 of cyclin/CDK4-bound p21 by CDK4/6
and CDK2. These phosphorylations of p21 would then facilitate
the CDK7-dependent phosphorylation at T172 of the bulk of CDK4
complexes stabilized by p21. Other mechanisms should exist in
other cell systems and regulations, presumably involving
other CDK4-activating kinase(s), to explain the p21-independent
activation of cyclin D3-CDK4-p27 complexes observed in the
cAMP-dependent cell cycle of thyrocytes18,37,38 and the high
phosphorylation level of CDK4 in p27-bound cyclin D3-CDK4
complexes in other cells including T98G cells.15,18,19,82

JNKs exert oncogenic actions in several cancers including
hepatocellular carcinoma.50,62,83,84 Positive effects on cell prolif-
eration and escape from senescence were well described in

MEFs48,52,85,86 and during liver regeneration.87 They are especially
observed in tumoral cells and in in vivo cancer models in which
high constitutive basal activity of JNKs is observed, due to either
expression of long JNK2 isoforms (α2), which dimerize and trans-
autophosphorylate,88–91 or overexpression of the JNK activating
kinases MKK4 and MKK7.51,92,93 In general, mechanisms of cell
cycle regulation by JNKs were thought to result from c-Jun
phosphorylation and stabilization, AP-1 transcriptional activation
and cyclin D1 transcriptional induction,43,48,60,61,83,87 p21
downregulation,50 or transcriptional downregulation of Trp53.86

Here, we provide evidence that JNKs also directly control the
activation and activity of cyclin D1-CDK4 complexes by phosphor-
ylating both CDK4 and p21. As CDK4 is emerging as a new major
target for cancer therapy, our present findings together with the
availability of new classes of JNK inhibitory drugs,62,65 suggest the
possibility of specifically targeting JNKs to control deregulated
CDK4 activation in some cancers.

MATERIALS AND METHODS
Cell cultures, JNKs inhibition and BrdU incorporation
T98G and MCF-7 cells were authenticated by profiling of short tandem
repeats (STR, performed by ATCC before submission of the revised
manuscript). All cell lines were tested for mycoplasma contamination. T98G
and CHO cells were obtained and cultured as described.15,23 T98G cells
were serum-starved and their growth was stimulated with 15% FBS. MCF-7
cells were obtained and cultured as described94 in DMEM supplemented
with antibiotics, 1% non-essential aminoacids, 6 ng/ml insulin and 5% FBS.
After starvation for 3 days in DMEM without phenol red, FBS and insulin,
they were growth-stimulated in medium supplemented with 5% FBS, 6 ng/ml
insulin and 10− 7 M β-estradiol. Primary wild-type, JNK1− /− and JNK1− /−

JNK2MG/MG MEFs were isolated in the Roger J. Davis Lab48 and cultured in
DMEM supplemented with antibiotics, 10% heat-inactivated FBS and
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1 mM N-acetylcysteine. MEFs were synchronized by incubation for 36 h
with 2 mM thymidine, released for 36 h in 10% FBS medium, then starved
for 60 h in serum-free medium, and then stimulated with 10% FBS.
Inhibitory drugs were dissolved in DMSO and used at the following
concentrations: 25 μM SP600125 (S5567, Sigma, St Louis, MO, USA), 10 μM
JNK-IN-8 (inhibitor XVI, sc-364745 from Santa Cruz Biotechnology, Dallas,
TX, USA), 20 μM R-roscovitine (R7772, Sigma), 10 μM 3MB-PP1 (529582,
Calbiochem, San Diego, CA, USA). Controls were treated with DMSO. DNA-
replicating cells were identified by incubation with BrdU for 30 min and
counted under the microscope.95

Transfections
CHO cells were transfected for 48 h as described23 in 9-cm petridishes
with 4 μg pcDNA3 vector encoding myc-tagged CDK4, 4 μg pcDNA3
vector encoding Xpress-cyclin D3, or 4 μg pCS2 vector encoding cyclin
D1-flag, and 4 μg PE vector encoding p21 or its mutants. In experiments
with a 1/10 dilution of p21 vector, 0.4 μg of vector encoding wt p21
was used.

Immunoprecipitations
Co-immunoprecipitations were performed as described15,18 using mono-
clonal antibodies against cyclin D1 (EPR2241, Abcam, Cambridge, UK),
cyclin D3 (DCS-28, Neomarkers, Fremont, CA, USA) or polyclonal antibody
against p21 (C-19, sc-397 from Santa Cruz Biotechnology).

Rb-kinase assay
As described,15,18 Ip complexes were incubated with 2 mM ATP and 0.3 μg
of a aa773-928 fragment of human Rb for 15 min at 30 °C with constant
agitation. The incubation mixture was separated by SDS–PAGE and T826
phosphorylation of the Rb fragment, CDK4, cyclin D1, cyclin D3, p21 and
p27 were immunodetected using antibodies listed below.

In vitro phosphorylation assay of CDK4 and p21
Cyclin D1-CDK4-p21 and cyclin D3-CDK4-p21 or p21 alone were Ip from
CHO cells transfected as above and used as substrate for the assay. The
immunoprecipitates were washed three times with NP-40 buffer15,18 and
once with CAK buffer (80 mM β-glycerophosphate pH 7.3, 15 mM MgCl2,
20 mM EGTA, 5 mM dithiothreitol).36 The immunoprecipitates were then
incubated for 1 h at 30 °C with constant agitation in 50 μl CAK buffer
with the indicated concentrations of ATP and 1 μg of recombinant
active kinases: CDK7/cyclin H/MAT1 (WAB0365-B, Millipore, Billerica,
MA, USA), JNK1-MAPK8 (11CBS-0166G), JNK2-MAPK9 (10CBS-0674E),
JNK3-MAPK10 (11CBS-0377B), p38α-MAPK14 (10CBS-0523 J), ERK2-MAPK1
(09CBS-0516E; all from Carna Biosciences, Natick, MA, USA) or ERK1-MAPK3
(PV3311, Invitrogen, Carlsbad, CA, USA).

2D-gel electrophoresis
As described,15,23,82 the washed Ip complexes were denatured in a solution
containing 7 M urea and 2 M thiourea. Proteins were separated by
isoelectric focusing on linear gradient strips pH 5–8 (BioRad, Hercules, CA,
USA) or pH 3–10 (Amersham Biosciences, GE Healthcare Europe, Diegem,
Belgium), then by molecular weight in 12.5% SDS–PAGE gels. Next, they
were immunoblotted using CDK4 H-22 antibody (sc-601, Santa Cruz), p21
C-19 antibody (sc-397, Santa Cruz), a non-commercialized polyclonal
phosphospecific CDK4 (T172) antibody (from Cell Signaling Technology,
Danvers, MA, USA) that we had fully characterized,15,21 or a phosphospe-
cific p21(T57) antibody (AP3190a, Abgent, San Diego, CA, USA).

Immunoblot analyses
SDS–PAGE separations of equal amounts of whole cell extract proteins or
immunoprecipitates15 were immunodetected using the following anti-
bodies: cyclin D1 (DCS-6, sc-20044), cyclin D3 (DCS-22, sc-56307),
CDK4 (DCS-31, sc-56277), p21 (C-19, sc-397), p27 (DCS-72, sc-56338) and
c-Jun (H-79, sc-1694) (all from Santa Cruz), p21 (12D1, #2947 from Cell
Signalling Technology), phospho c-Jun (Ser63) (#2361 from Cell Signalling
Technology or MA5-15115 from Thermo-Fisher Scientific, Waltham, MA,
USA) or phospho Rb (Thr826) (EPR5351, ab133446 from Abcam).
Both in 2D-gel and 1D-gel immunoblot analyses, chemiluminescence

detections on films were quantitated using a GS-800 densitometer and the
Quantity-One software (BioRad). Chemiluminescence images of blots were
also captured with a Vilber-Lourmat Solo7S camera and quantified using
the Bio1D software (Vilber-Lourmat).
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