Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cancer-associated fibroblasts induce cancer cell apoptosis that regulates invasion mode of tumours

Abstract

In the process of cancer spreading, different modes of invasion exist. One is expansive invasion, in which a group of cancer cells gradually expands along with cancer cell proliferation. Invasion of cancer cells is also modified by their interaction with stromal cells including cancer-associated fibroblasts (CAFs). Cancer cells co-invade with CAFs, and invasion by CAFs frequently precede invasion by cancer cells, which indicates CAF-led cancer cell invasion. Here, we show that CAFs induce apoptosis in gastric cancer cells, which prevented expansive invasion by cancer cells and instead facilitated CAF-led invasion. Death receptor 4 and activation of caspase-8 in cancer cells mediated cancer cell apoptosis induced by CAFs, which was dependent on contact between cancer cells and CAFs. Apoptotic cancer cells in turn released apoptotic vesicles and stimulated invasion of CAFs. Accordingly, cancer cells followed the migrating CAFs. Treatment with a caspase inhibitor, ZVAD, or forced expression of a death domain fragment in cancer cells prevented cancer cell apoptosis induced by CAFs and increased expansive invasion by cancer cells in extracellular gel invasion assays, while the rate of cancer cell invasion led by CAFs was decreased. Death domain-fragment expression also prevented intramural invasion by gastric cancer cells in the stomach. Because CAF-led invasion is characterized by the movement of individual cancer cells away from the tumour, adequate cancer cell apoptosis may promote cancer dissemination.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Hwang RF, Moore T, Arumugam T, Ramachandran V, Amos KD, Rivera A et al. Cancer associated stromal fibroblasts promote pancreatic tumor progression. Cancer Res 2008; 68: 918–926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Liu S, Ginestier C, Ou SJ, Clouthier SG, Patel SH, Monville F et al. Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res 2011; 71: 614–624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tsai KS, Yang SH, Lei YP, Tsai CC, Chen HW, Hsu CY et al. Mesenchymal stem cells promote formation of colorectal tumors in mice. Gastroenterology 2011; 141: 1046–1056.

    Article  CAS  PubMed  Google Scholar 

  4. Hsu HS, Lin JH, Hsu TW, Su K, Wang CW, Yang KY et al. Mesenchymal stem cells enhance lung cancer initiation through activation of IL-6/JAK2/STAT3 pathway. Lung Cancer 2012; 75: 167–177.

    Article  PubMed  Google Scholar 

  5. Lin JT, Wang JY, Chen MK, Chen HC, Chang TH, Su BW et al. Colon cancer mesenchymal stem cells modulate the tumorigenicity of colon cancer through interleukin 6. Exp Cell Res 2013; 319: 2216–2229.

    Article  CAS  PubMed  Google Scholar 

  6. Subramaniam KS, Omar IS, Kwong SC, Mohamed Z, Woo YL, Adenan NAM et al. Cancer-associated fibroblasts promote endometrial cancer growth via activation of interleukin-6/STAT-3/c-Myc pathway. Am J Cancer Res 2016; 6: 200–213.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sanchez-Lopez E, Flashner-Abramson E, Shalapour S, Zhong Z, Taniguchi K, Levitzki A et al. Targeting colorectal cancer via its microenvironment by inhibiting IGF-1 Receptor-insulin receptor substrate and STAT3 signaling. Oncogene 2015; 35: 2634–2644.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Waghray M, Yalamanchili M, Dziubinski M, Zeinali M, Erkkinen M, Yang H et al. GM-CSF mediates mesenchymal-epithelial crosstalk in pancreatic cancer. Cancer Discov 2016; 8: 886–899.

    Article  Google Scholar 

  9. Yoon N, Park MS, Shigemoto T, Peltier G, Lee RH . Activated human mesenchymal stem/stromal cells suppress metastatic features of MDA-MB-231 cells by secreting IFN-β. Cell Death Dis 2016; 7: e2191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee RH, Yoon N, Reneau JC, Prockop DJ . Preactivation of human MSCs with TNF-alpha enhances tumor-suppressive activity. Cell Stem Cell 2012; 11: 825–835.

    Article  CAS  PubMed  Google Scholar 

  11. Ozdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu CC, Simpson TR et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 2014; 25: 719–734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rhim AD, Oberstein PE, Thomas DH, Mirek ET, Palermo CF, Sastra SA et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 2014; 25: 735–747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ding S, Chen G, Zhang W, Xing C, Xu X, Xie H et al. MRC-5 fibroblast-conditioned medium influences multiple pathways regulating invasion, migration, proliferation, and apoptosis in hepatocellular carcinoma. J Transl Med 2015; 13: 237.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Clark AG, Vignjevic DM . Modes of cancer cell invasion and the role of the microenvironment. Curr Opin Cell Biol 2015; 36: 13–22.

    Article  CAS  PubMed  Google Scholar 

  15. Satoyoshi R, Kuriyama S, Aiba N, Yashiro M, Tanaka M . Asporin activates coordinated invasion of scirrhous gastric cancer and cancer-associated fibroblasts. Oncogene 2015; 34: 650–660.

    Article  CAS  PubMed  Google Scholar 

  16. Tanaka M, Kuriyama S, Itoh G, Kohyama A, Iwabuchi Y, Shibata H et al. Identification of anti-cancer chemical compounds using Xenopus embryos. Cancer Sci 2016; 107: 803–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Walczak H . Death receptor-ligand systems in cancer, cell death, and inflammation. Cold Spring Harb Perspect Biol 2013; 5: a008698.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jain MV, Paczulla AM, Klonisch T, Dimgba FN, Rao SB, Roberg K et al. Interconnections between apoptotic, autophagic and necrotic pathways: implications for cancer therapy development. J Cell Mol Med 2013; 17: 12–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Siegelin MD, Gaiser T, Siegelin Y . The XIAP inhibitor Embelin enhances TRAIL-mediated apoptosis in malignant glioma cells by downregulation of the short isoform of FLIP. Neurochem Int 2009; 55: 423–430.

    Article  CAS  PubMed  Google Scholar 

  20. Walczak H, Haas TL . Biochemical analysis of the native TRAIL death-inducing signaling complex. Methods Mol Biol 2008; 414: 221–239.

    CAS  PubMed  Google Scholar 

  21. Lo YC, Lin SC, Yang CY, Tung JY . Tandem DEDs and CARDs suggest novel mechanisms of signaling complex assembly. Apoptosis 2015; 20: 124–135.

    Article  CAS  PubMed  Google Scholar 

  22. Sakamaki K, Takagi C, Kominami K, Sakata S, Yaoita Y, Kubota HY et al. The adaptor molecule FADD from Xenopus laevis demonstrates evolutionary conservation of its pro-apoptotic activity. Genes Cells 2004; 9: 1249–1264.

    Article  CAS  PubMed  Google Scholar 

  23. Gaggioli C, Hooper S, Hidalgo-Carcedo C, Grosse R, Marshall JF, Harrington K et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol 2007; 9: 1392–1400.

    Article  CAS  PubMed  Google Scholar 

  24. Alexander S, Weigelin B, Winkler F, Friedl P . Preclinical intravital microscopy of the tumour-stroma interface: invasion, metastasis, and therapy response. Curr Opin Cell Biol 2013; 25: 659–671.

    Article  CAS  PubMed  Google Scholar 

  25. Geraldo S, Simon A, Elkhatib N, Louvard D, Fetler L, Vignjevic DM . Do cancer cells have distinct adhesions in 3D collagen matrices and in vivo? Eur J Cell Biol 2012; 91: 930–937.

    Article  CAS  PubMed  Google Scholar 

  26. Sidani M, Wyckoff J, Xue C, Segall JE, Condeelis J . Probing the microenvironment of mammary tumors using multiphoton microscopy. J Mammary Gland Biol Neoplasia 2006; 11: 151–163.

    Article  PubMed  Google Scholar 

  27. Antwi-Baffour SS . Molecular characterisation of plasma membrane-derived vesicles. J Biomed Sci 2015; 22: 68.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ciardiello C, Cavallini L, Spinelli C, Yang J, Reis-Sobreiro M, Candia PD et al. Focus on extracellular vesicles: new frontiers of cell-to-cell communication in cancer. Int J Mol Sci 2016; 17: 175.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Thery C, Ostrowski M, Segura E . Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 2009; 9: 581–593.

    Article  CAS  PubMed  Google Scholar 

  30. Qian Z, Shen Q, Yang X, Qiu Y, Zhang W . The role of extracellular vesicles: an epigenetic view of the cancer microenvironment. Biomed Res Int 2015; 2015: 649161.

    PubMed  PubMed Central  Google Scholar 

  31. Turiak L, Misjak P, Szabo TG, Aradi B, Paloczi K, Ozohanics O et al. Proteomic characterization of thymocyte-derived microvesicles and apoptotic bodies in BALB/C mice. J Proteom 2011; 74: 2025–2033.

    Article  CAS  Google Scholar 

  32. Muhsin-Sharafaldine MR, Saunderson SC, Dunn AC, Faed JM, Kleffmann T, McLellan AD . Procoagulant and immunogenic properties of melanoma exosomes, microvesicles and apoptotic vesicles. Oncotarget 2016; 7: 56279–56294.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yanagihara K, Takigahira M, Tanaka H, Komatsu T, Fukumoto H, Koizumi F et al. Development and biological analysis of peritoneal metastasis mouse models for human scirrhous stomach cancer. Cancer Sci 2005; 96: 323–332.

    Article  CAS  PubMed  Google Scholar 

  34. Yanagihara K, Tanaka H, Takigahira M, Ino Y, Yamaguchi Y, Toge T et al. Establishment of two cell lines from human gastric scirrhous carcinoma that possess the potential to metastasize spontaneously in nude mice. Cancer Sci 2004; 95: 575–582.

    Article  CAS  PubMed  Google Scholar 

  35. Fuyuhiro Y, Yashiro M, Noda S, Kashiwagi S, Matsuoka J, Doi Y et al. Upregulation of cancer-associated myofibroblasts by TGF-β from scirrhous gastric carcinoma cells. Br J Cancer 2011; 105: 996–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Crescitelli R, Lasser C, Szabo TG, Kittel A, Eldh M, Dianzani I et al. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles 2013; 2: 20677.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI grants (nos. 26640068 and 16H04691 to MT), a Research Grant of the Princess Takamatsu Cancer Research Fund (14-24620 to MT), and Project Mirai Cancer Research grants to MT

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Tanaka.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Itoh, G., Chida, S., Yanagihara, K. et al. Cancer-associated fibroblasts induce cancer cell apoptosis that regulates invasion mode of tumours. Oncogene 36, 4434–4444 (2017). https://doi.org/10.1038/onc.2017.49

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.49

This article is cited by

Search

Quick links