Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Nutrient sensor O-GlcNAc transferase controls cancer lipid metabolism via SREBP-1 regulation

Abstract

Elevated O-GlcNAcylation is associated with disease states such as diabetes and cancer. O-GlcNAc transferase (OGT) is elevated in multiple cancers and inhibition of this enzyme genetically or pharmacologically inhibits oncogenesis. Here we show that O-GlcNAcylation modulates lipid metabolism in cancer cells. OGT regulates expression of the master lipid regulator the transcription factor sterol regulatory element binding protein 1 (SREBP-1) and its transcriptional targets both in cancer and lipogenic tissue. OGT regulates SREBP-1 protein expression via AMP-activated protein kinase (AMPK). SREBP-1 is critical for OGT-mediated regulation of cell survival and of lipid synthesis, as overexpression of SREBP-1 rescues lipogenic defects associated with OGT suppression, and tumor growth in vitro and in vivo. These results unravel a previously unidentified link between O-GlcNAcylation, lipid metabolism and the regulation of SREBP-1 in cancer and suggests a crucial role for O-GlcNAc signaling in transducing nutritional state to regulate lipid metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Boroughs LK, DeBerardinis RJ . Metabolic pathways promoting cancer cell survival and growth. Nat Cell Biol 2015; 17: 351–359.

    Article  CAS  Google Scholar 

  2. Hart GW, Housley MP, Slawson C . Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature 2007; 446: 1017–1022.

    Article  CAS  Google Scholar 

  3. Wellen KE, Thompson CB . Cellular metabolic stress: considering how cells respond to nutrient excess. Mol Cell 2010; 40: 323–332.

    Article  CAS  Google Scholar 

  4. Varki A, Cummings R, Esko J et al. Essentials of Glycobiology. Cold Spring Harbor Laboratory Press: NY, 1999.

    Google Scholar 

  5. Ozcan S, Andrali SS, Cantrell JE . Modulation of transcription factor function by O-GlcNAc modification. Biochim Biophys Acta 2010; 1799: 353–364.

    Article  Google Scholar 

  6. Chou TY, Dang CV, Hart GW . Glycosylation of the c-Myc transactivation domain. Proc Natl Acad Sci USA 1995; 92: 4417–4421.

    Article  CAS  Google Scholar 

  7. Kawauchi K, Araki K, Tobiume K, Tanaka N . Loss of p53 enhances catalytic activity of IKKbeta through O-linked beta-N-acetyl glucosamine modification. Proc Natl Acad Sci USA 2009; 106: 3431–3436.

    Article  CAS  Google Scholar 

  8. McClain DA, Lubas WA, Cooksey RC, Hazel M, Parker GJ, Love DC et al. Altered glycan-dependent signaling induces insulin resistance and hyperleptinemia. Proc Natl Acad Sci USA 2002; 99: 10695–10699.

    Article  CAS  Google Scholar 

  9. Hardiville S, Hart GW . Nutrient regulation of signaling, transcription, and cell physiology by O-GlcNAcylation. Cell Metab 2014; 20: 208–213.

    Article  CAS  Google Scholar 

  10. Ferrer CM, Sodi VL, Reginato MJ . O-GlcNAcylation in cancer biology: linking metabolism and signaling. J Mol Biol 2016; 428: 3282–3294.

    Article  CAS  Google Scholar 

  11. Caldwell SA, Jackson SR, Shahriari KS, Lynch TP, Sethi G, Walker S et al. Nutrient sensor O-GlcNAc transferase regulates breast cancer tumorigenesis through targeting of the oncogenic transcription factor FoxM1. Oncogene 2010; 29: 2831–2842.

    Article  CAS  Google Scholar 

  12. Lynch TP, Ferrer CM, Jackson SR, Shahriari KS, Vosseller K, Reginato MJ . Critical role of O-Linked beta-N-acetylglucosamine transferase in prostate cancer invasion, angiogenesis, and metastasis. J Biol Chem 2012; 287: 11070–11081.

    Article  CAS  Google Scholar 

  13. Ferrer CM, Lu TY, Bacigalupa ZA, Katsetos CD, Sinclair DA, Reginato MJ . O-GlcNAcylation regulates breast cancer metastasis via SIRT1 modulation of FOXM1 pathway. Oncogene 2017; 36: 559–569.

    Article  CAS  Google Scholar 

  14. Baenke F, Peck B, Miess H, Schulze A . Hooked on fat: the role of lipid synthesis in cancer metabolism and tumour development. Dis Model Mech 2013; 6: 1353–1363.

    Article  CAS  Google Scholar 

  15. Swinnen JV, Brusselmans K, Verhoeven G . Increased lipogenesis in cancer cells: new players, novel targets. Curr Opin Clin Nutr Metab Care 2006; 9: 358–365.

    Article  CAS  Google Scholar 

  16. Santos CR, Schulze A . Lipid metabolism in cancer. FEBS J 2012; 279: 2610–2623.

    Article  CAS  Google Scholar 

  17. Horton JD, Goldstein JL, Brown MS . SREBPs: transcriptional mediators of lipid homeostasis. Cold Spring Harb Symp Quant Biol 2002; 67: 491–498.

    Article  CAS  Google Scholar 

  18. Walker AK, Jacobs RL, Watts JL, Rottiers V, Jiang K, Finnegan DM et al. A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans. Cell 2011; 147: 840–852.

    Article  CAS  Google Scholar 

  19. Beckner ME, Fellows-Mayle W, Zhang Z, Agostino NR, Kant JA, Day BW et al. Identification of ATP citrate lyase as a positive regulator of glycolytic function in glioblastomas. Int J Cancer 2010; 126: 2282–2295.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Li W, Tai Y, Zhou J, Gu W, Bai Z, Zhou T et al. Repression of endometrial tumor growth by targeting SREBP1 and lipogenesis. Cell Cycle 2012; 11: 2348–2358.

    Article  CAS  Google Scholar 

  21. Rohrig F, Schulze A . The multifaceted roles of fatty acid synthesis in cancer. Nat Rev Cancer 2016; 16: 732–749.

    Article  Google Scholar 

  22. Luo Z, Zang M, Guo W . AMPK as a metabolic tumor suppressor: control of metabolism and cell growth. Future Oncol 2010; 6: 457–470.

    Article  CAS  Google Scholar 

  23. Laderoute KR, Amin K, Calaoagan JM, Knapp M, Le T, Orduna J et al. 5'-AMP-activated protein kinase (AMPK) is induced by low-oxygen and glucose deprivation conditions found in solid-tumor microenvironments. Mol Cell Biol 2006; 26: 5336–5347.

    Article  CAS  Google Scholar 

  24. Li Y, Xu S, Mihaylova MM, Zheng B, Hou X, Jiang B et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab 2011; 13: 376–388.

    Article  CAS  Google Scholar 

  25. Zadra G, Batista JL, Loda M . Dissecting the dual role of AMPK in cancer: from experimental to human studies. Mol Cancer Res 2015; 13: 1059–1072.

    Article  CAS  Google Scholar 

  26. Greenspan P, Mayer EP, Fowler SD . Nile red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol 1985; 100: 965–973.

    Article  CAS  Google Scholar 

  27. Guy CT, Cardiff RD, Muller WJ . Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol 1992; 12: 954–961.

    Article  CAS  Google Scholar 

  28. Eberle D, Hegarty B, Bossard P, Ferre P, Foufelle F . SREBP transcription factors: master regulators of lipid homeostasis. Biochimie 2004; 86: 839–848.

    Article  CAS  Google Scholar 

  29. Anderson SM, Rudolph MC, McManaman JL, Neville MC . Key stages in mammary gland development. Secretory activation in the mammary gland: it's not just about milk protein synthesis!. Breast Cancer Res 2007; 9: 204.

    Article  Google Scholar 

  30. O'Donnell N, Zachara NE, Hart GW, Marth JD . Ogt-dependent X-chromosome-linked protein glycosylation is a requisite modification in somatic cell function and embryo viability. Mol Cell Biol 2004; 24: 1680–1690.

    Article  CAS  Google Scholar 

  31. Sundqvist A, Bengoechea-Alonso MT, Ye X, Lukiyanchuk V, Jin J, Harper JW et al. Control of lipid metabolism by phosphorylation-dependent degradation of the SREBP family of transcription factors by SCF(Fbw7). Cell Metab 2005; 1: 379–391.

    Article  CAS  Google Scholar 

  32. Ferrer CM, Lynch TP, Sodi VL, Falcone JN, Schwab LP, Peacock DL et al. O-GlcNAcylation regulates cancer metabolism and survival stress signaling via regulation of the HIF-1 pathway. Mol Cell 2014; 54: 820–831.

    Article  CAS  Google Scholar 

  33. Buzzai M, Bauer DE, Jones RG, Deberardinis RJ, Hatzivassiliou G, Elstrom RL et al. The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid beta-oxidation. Oncogene 2005; 24: 4165–4173.

    Article  CAS  Google Scholar 

  34. Itkonen HM, Minner S, Guldvik IJ, Sandmann MJ, Tsourlakis MC, Berge V et al. O-GlcNAc transferase integrates metabolic pathways to regulate the stability of c-MYC in human prostate cancer cells. Cancer Res 2013; 73: 5277–5287.

    Article  CAS  Google Scholar 

  35. Shaw RJ, Cantley LC . Decoding key nodes in the metabolism of cancer cells: sugar & spice and all things nice. F1000 Biol Rep 2012; 4: 2.

    PubMed  PubMed Central  Google Scholar 

  36. Chou TY, Hart GW, Dang CV . c-Myc is glycosylated at threonine 58, a known phosphorylation site and a mutational hot spot in lymphomas. J Biol Chem 1995; 270: 18961–18965.

    Article  CAS  Google Scholar 

  37. Li X, Wu JB, Li Q, Shigemura K, Chung LW, Huang WC . SREBP-2 promotes stem cell-like properties and metastasis by transcriptional activation of c-Myc in prostate cancer. Oncotarget 2016; 7: 12869–12884.

    PubMed  PubMed Central  Google Scholar 

  38. Jones SF, Infante JR . Molecular Pathways: Fatty Acid Synthase. Clin Cancer Research 2015; 21: 5434–5438.

    Article  CAS  Google Scholar 

  39. Busino L, Millman SE, Scotto L, Kyratsous CA, Basrur V, O'Connor O et al. Fbxw7alpha- and GSK3-mediated degradation of p100 is a pro-survival mechanism in multiple myeloma. Nat Cell Biol 2012; 14: 375–385.

    Article  CAS  Google Scholar 

  40. Sodi VL, Khaku S, Krutilina R, Schwab LP, Vocadlo DJ, Seagroves TN et al. MTOR/mYC axis regulates O-GLcNAc transferase expression and O-GLcNAcylation in breast cancer. Mol Cancer Res 2015; 13: 923–933.

    Article  CAS  Google Scholar 

  41. Lopez-Ibanez J, Pazos F, Chagoyen M . MBROLE 2.0-functional enrichment of chemical compounds. Nucleic Acids Res 2016; 44: W201–W204.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Nicholas Xerri for technical support and Mignon Keaton for help in analyzing LC–MS metabolite data. This work was supported by NCI grants CA192868 (to VLS), CA183574 (to CMF) and CA155413 (to MJR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M J Reginato.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sodi, V., Bacigalupa, Z., Ferrer, C. et al. Nutrient sensor O-GlcNAc transferase controls cancer lipid metabolism via SREBP-1 regulation. Oncogene 37, 924–934 (2018). https://doi.org/10.1038/onc.2017.395

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.395

This article is cited by

Search

Quick links