Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

RAF inhibitor LY3009120 sensitizes RAS or BRAF mutant cancer to CDK4/6 inhibition by abemaciclib via superior inhibition of phospho-RB and suppression of cyclin D1

Abstract

KRAS, NRAS and BRAF mutations are among the most important oncogenic drivers in many major cancer types, such as melanoma, lung, colorectal and pancreatic cancer. There is currently no effective therapy for the treatment of RAS mutant cancers. LY3009120, a pan-RAF and RAF dimer inhibitor advanced to clinical study has been shown to inhibit both RAS and BRAF mutant cell proliferation in vitro and xenograft tumor growth in vivo. Abemaciclib, a CDK4/6-selective inhibitor, is currently in phase III studies for ER-positive breast cancer and KRAS mutant lung cancer. In this study, we found that combinatory treatment with LY3009120 and abemaciclib synergistically inhibited proliferation of tumor cells in vitro and led to tumor growth regression in xenograft models with a KRAS, NRAS or BRAF mutation at the doses of two drugs that were well tolerated in combination. Further in vitro screen in 328 tumor cell lines revealed that tumor cells with KRAS, NRAS or BRAF mutation, or cyclin D activation are more sensitive, whereas tumor cells with PTEN, PIK3CA, PIK3R1 or retinoblastoma (Rb) mutation are more resistant to this combination treatment. Molecular analysis revealed that abemaciclib alone inhibited Rb phosphorylation partially and caused an increase of cyclin D1. The combinatory treatment cooperatively demonstrated more complete inhibition of Rb phosphorylation, and LY3009120 suppressed the cyclin D1 upregulation mediated by abemaciclib. These results were further verified by CDK4/6 siRNA knockdown. Importantly, the more complete phospho-Rb inhibition and cyclin D1 suppression by LY3009120 and abemaciclib combination led to more significant cell cycle G0/G1 arrest of tumor cells. These preclinical findings suggest that combined inhibition of RAF and d-cyclin-dependent kinases might provide an effective approach to treat patients with tumors harboring mutations in RAS or RAF genes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Cox AD, Fesik SW, Kimmelman AC, Luo J, Der CJ . Drugging the undruggable RAS: mission possible? Nat Rev Drug Discov 2014; 13: 828–851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D . RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer 2011; 11: 761–774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417: 949–954.

    Article  CAS  PubMed  Google Scholar 

  4. Lito P, Pratilas CA, Joseph EW, Tadi M, Halilovic E, Zubrowski M et al. Relief of profound feedback inhibition of mitogenic signaling by RAF inhibitors attenuates their activity in BRAFV600E melanomas. Cancer Cell 2012; 22: 668–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lito P, Rosen N, Solit DB . Tumor adaptation and resistance to RAF inhibitors. Nat Med 2013; 19: 1401–1409.

    Article  CAS  PubMed  Google Scholar 

  6. Wan PTC, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 2004; 116: 855–867.

    Article  CAS  PubMed  Google Scholar 

  7. Poulikakos PI, Persaud Y, Janakiraman M, Kong X, Ng C, Moriceau G et al. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 2011; 480: 387–390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wellbrock C, Ogilvie L, Hedley D, Karasarides M, Martin J, Niculescu-Duvaz D et al. V599EB-RAF is an oncogene in melanocytes. Cancer Res 2004; 64: 2338–2342.

    Article  CAS  PubMed  Google Scholar 

  9. Bollag G, Hirth P, Tsai J, Zhang J, Ibrahim PN, Cho H et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 2010; 467: 596–599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. King AJ, Arnone MR, Bleam MR, Moss KG, Yang J, Fedorowicz KE et al. Dabrafenib; preclinical characterization, increased efficacy when combined with trametinib, while BRAF/MEK tool combination reduced skin lesions. PLoS One 2013; 8: e67583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang H, Higgins B, Kolinsky K, Packman K, Go Z, Iyer R et al. RG7204 (PLX4032), a selective BRAFV600E inhibitor, displays potent antitumor activity in preclinical melanoma models. Cancer Res 2010; 70: 5518–5527.

    Article  CAS  PubMed  Google Scholar 

  12. Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 2011; 364: 2507–2516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 2010; 363: 809–819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hauschild A, Grob JJ, Demidov LV, Jouary T, Gutzmer R, Millward M et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 2012; 380: 358–365.

    Article  CAS  PubMed  Google Scholar 

  15. Hatzivassiliou G, Song K, Yen I, Brandhuber BJ, Anderson DJ, Alvarado R et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 2010; 464: 431–435.

    Article  CAS  PubMed  Google Scholar 

  16. Heidorn SJ, Milagre C, Whittaker S, Nourry A, Niculescu-Duvas I, Dhomen N et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell 2010; 140: 209–221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N . RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 2010; 464: 427–430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sanchez-Laorden B, Viros A, Girotti MR, Pedersen M, Saturno G, Zambon A et al. BRAF inhibitors induce metastasis in RAS mutant or inhibitor-resistant melanoma cells by reactivating MEK and ERK signaling. Sci Signal 2014; 7: ra30.

    Article  PubMed  Google Scholar 

  19. Henry JR, Kaufman MD, Peng SB, Ahn YM, Caldwell TM, Vogeti L et al. Discovery of 1-(3,3-Dimethylbutyl)-3-(2-fluoro-4-methyl-5-(7-methyl-2-(methylamino)pyrido[2,3- d]pyrimidin-6-yl)phenyl)urea (LY3009120) as a Pan-RAF ihibitor with minimal paradoxical activation and activity against BRAF or RAS mutant tumor cells. J Med Chem 2015; 58: 4165–4179.

    Article  CAS  PubMed  Google Scholar 

  20. Peng SB, Henry JR, Kaufman MD, Lu WP, Smith BD, Vogeti S et al. Inhibition of RAF isoforms and active dimers by LY3009120 leads to anti-tumor activities in RAS or BRAF mutant cancers. Cancer Cell 2015; 28: 384–398.

    Article  CAS  PubMed  Google Scholar 

  21. Chen SH, Zhang Y, Van Horn RD, Yin T, Buchanan S, Yadav V et al. Oncogenic BRAF deletions that function as homodimers and are sensitive to inhibition by RAF dimer inhibitor LY3009120. Cancer Discov 2016; 6: 300–315.

    Article  CAS  PubMed  Google Scholar 

  22. Sherr CJ . Cancer cell cycle. Science 1996; 274: 1672–1677.

    Article  CAS  PubMed  Google Scholar 

  23. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW . Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997; 88: 593–602.

    Article  CAS  PubMed  Google Scholar 

  24. Malumbres M, Barbacid M . Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 2009; 9: 153–166.

    Article  CAS  PubMed  Google Scholar 

  25. Musgrove EA, Caldon CE, Barraclough J, Stone A, Sutherland RL . Cyclin D as a therapeutic target in cancer. Nat Rev Cancer 2011; 11: 558–572.

    Article  CAS  PubMed  Google Scholar 

  26. Sherr CJ, Beach D, Shapiro G . Targeting CDK4 and CDK6: from discovery to therapy. Cancer Discov 2016; 6: 353–367.

    Article  CAS  PubMed  Google Scholar 

  27. Fry DW, Harvey PJ, Keller PR, Elliott WL, Meade M, Trachet E et al. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther 2004; 3: 1427–1438.

    CAS  PubMed  Google Scholar 

  28. Rader J, Russell MR, Hart LS, Nakazawa MS, Belcastro LT, Martinez D et al. Dual CDK4/CDK6 inhibition induces cell-cycle arrest and senescence in neuroblastoma. Clin Cancer Res 2013; 19: 6173–6182.

    Article  CAS  PubMed  Google Scholar 

  29. Gelbert LM, Cai S, Lin X, Sanchez-Martinez C, Del Prado M, Lallena MJ et al. Preclinical characterization of the CDK4/6 inhibitor LY2835219: in-vivo cell cycle-dependent/independent anti-tumor activities alone/in combination with gemcitabine. Invest New Drugs 2014; 32: 825–837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Klein EA, Assoian RK . Transcriptional regulation of the cyclin D1 gene at a glance. J Cell Sci 2008; 121: 3853–3857.

    Article  CAS  PubMed  Google Scholar 

  31. Puyol M, Martin A, Dubus P, Mulero F, Pizcueta P, Khan G et al. A synthetic lethal interaction between K-Ras oncogenes and Cdk4 unveils a therapeutic strategy for non-small cell lung carcinoma. Cancer Cell 2010; 18: 63–73.

    Article  CAS  PubMed  Google Scholar 

  32. Yadav V, Burke TF, Huber L, Van Horn RD, Zhang Y, Buchanan SG et al. The CDK4/6 inhibitor LY2835219 overcomes vemurafenib resistance resulting from MAPK reactivation and cyclin D1 upregulation. Mol Cancer Ther 2014; 13: 2253–2263.

    Article  CAS  PubMed  Google Scholar 

  33. Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP et al. A landscape of driver mutations in melanoma. Cell 2012; 150: 251–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chudnovsky Y, Adams AE, Robbins PB, Lin Q, Khavari PA . Use of human tissue to assess the oncogenic activity of melanoma-associated mutations. Nat Genet 2005; 37: 745–749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Monahan KB, Rozenberg GI, Krishnamurthy J, Johnson SM, Liu W, Bradford MK et al. Somatic p16(INK4a) loss accelerates melanomagenesis. Oncogene 2010; 29: 5809–5817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Patnaik A, Rosen LS, Tolaney SM, Tolcher AW, Goldman JW, Gandhi L et al. Efficacy and safety of abemaciclib, an inhibitor of CDK4 and CDK6, for patients with breast cancer, non-small cell lung cancer, and other solid tumors. Cancer Discov 2016; 6: 740–753.

    Article  CAS  PubMed  Google Scholar 

  37. Bhatt KV, Spofford LS, Aram G, McMullen M, Pumiglia K, Aplin AE . Adhesion control of cyclin D1 and p27Kip1 levels is deregulated in melanoma cells through BRAF-MEK-ERK signaling. Oncogene 2005; 24: 3459–3471.

    Article  CAS  PubMed  Google Scholar 

  38. Dong J, Phelps RG, Qiao R, Yao S, Benard O, Ronai Z et al. BRAF oncogenic mutations correlate with progression rather than initiation of human melanoma. Cancer Res 2003; 63: 3883–3885.

    CAS  PubMed  Google Scholar 

  39. Pollock PM, Harper UL, Hansen KS, Yudt LM, Stark M, Robbins CM et al. High frequency of BRAF mutations in nevi. Nat Genet 2003; 33: 19–20.

    Article  CAS  PubMed  Google Scholar 

  40. Dhomen N, Reis-Filho JS, da Rocha Dias S, Hayward R, Savage K, Delmas V et al. Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell 2009; 15: 294–303.

    Article  CAS  PubMed  Google Scholar 

  41. Goel VK, Ibrahim N, Jiang G, Singhal M, Fee S, Flotte T et al. Melanocytic nevus-like hyperplasia and melanoma in transgenic BRAFV600E mice. Oncogene 2009; 28: 2289–2298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yadav V, Chen SH, Yue YG, Buchanan S, Beckmann RP, Peng SB . Co-targeting BRAF and cyclin dependent kinases 4/6 for BRAF mutant cancers. Pharmacol Ther 2015; 149: 139–149.

    Article  CAS  PubMed  Google Scholar 

  43. Corcoran RB, Ebi H, Turke AB, Coffee EM, Nishino M, Cogdill AP et al. EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov 2012; 2: 227–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Prahallad A, Sun C, Huang S, Di Nicolantonio F, Salazar R, Zecchin D et al. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 2012; 483: 100–103.

    Article  CAS  PubMed  Google Scholar 

  45. Freeman AK, Ritt DA, Morrison DK . Effects of Raf dimerization and its inhibition on normal and disease-associated Raf signaling. Mol Cell 2013; 49: 751–758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kwong LN, Costello JC, Liu H, Jiang S, Helms TL, Langsdorf AE et al. Oncogenic NRAS signaling differentially regulates survival and proliferation in melanoma. Nat Med 2012; 18: 1503–1510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Johnpulle RAN, Johnson DB, Sosman J . Molecular targeted approaches for BRAF wild-type melanoma. Curr Oncol Rep 2016; 18: 6.

    Article  PubMed  Google Scholar 

  48. Yadav V, Zhang X, Liu J, Estrem S, Li S, Gong XQ et al. Reactivation of mitogen-activated protein kinase (MAPK) pathway by FGF receptor 3 (FGFR3)/Ras mediated resistance to vemurafenib in human B-RAF V600E mutant melanoma. J Biol Chem 2012; 287: 28087–28098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

All authors are employees of Eli Lilly and Company at the time that the work was done. All research described herein was funded by Eli Lilly and Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S-B Peng.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, SH., Gong, X., Zhang, Y. et al. RAF inhibitor LY3009120 sensitizes RAS or BRAF mutant cancer to CDK4/6 inhibition by abemaciclib via superior inhibition of phospho-RB and suppression of cyclin D1. Oncogene 37, 821–832 (2018). https://doi.org/10.1038/onc.2017.384

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.384

This article is cited by

Search

Quick links