Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Slug/Pcad pathway controls epithelial cell dynamics in mammary gland and breast carcinoma

Abstract

Mammary gland morphogenesis results from the coordination of proliferation, cohort migration, apoptosis and stem/progenitor cell dynamics. We showed earlier that the transcription repressor Slug is involved in these functions during mammary tubulogenesis. Slug is expressed by a subpopulation of basal epithelial cells, co-expressed with P-cadherin (Pcad). Slug-knockout mammary glands showed excessive branching, similarly to Pcad-knockout. Here, we found that Slug unexpectedly binds and activates Pcad promoter through E-boxes, inducing Pcad expression. We determined that Pcad can mediate several functions of Slug: Pcad promoted clonal mammosphere growth, basal epithelial differentiation, cell–cell dissociation and cell migration, rescuing Slug depletion. Pcad also promoted cell migration in isolated cells, in association with Src activation, focal adhesion reorganization and cell polarization. Pcad, similarly to Slug, was required for in vitro 3D tubulogenesis. Therefore, Pcad appears to be responsible for epithelial–mesenchymal transition-linked plasticity in mammary epithelial cells. In addition, we found that genes from the Slug/Pcad pathway components were co-expressed and specifically correlated in human breast carcinomas subtypes, carrying pathophysiological significance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Abbreviations

ChIP:

Chromatin immunoprecipitation

CK5:

Cytokeratin 5

CK8:

Cytokeratin 8

EMT:

Epithelial–mesenchymal transition

Ecad:

E-cadherin

ESR1:

Estrogen receptor 1

H2:

HER2

KO:

Knocked-out

Lum A:

Luminal A

Lum B:

Luminal B

Ncad:

N-cadherin

Nl:

Normal-like

Pcad:

P-cadherin

RFS:

Recurrence-free survival

SMA:

Smooth muscle actin.

References

  1. Nassour M, Idoux-Gillet Y, Selmi A, Côme C, Faraldo M-LM, Deugnier M-A et al. Slug controls stem/progenitor cell growth dynamics during mammary gland morphogenesis. PLoS One 2012; 7: e53498–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Guo W, Keckesova Z, Donaher JL, Shibue T, Tischler V, Reinhardt F et al. Slug and Sox9 cooperatively determine the mammary stem cell state. Cell 2012; 148: 1015–1028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Savagner P, Yamada KM, Thiery JP . The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition. J Cell Biol 1997; 137: 1403–1419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. del Barrio MG, Nieto MA . Overexpression of Snail family members highlights their ability to promote chick neural crest formation. Development 2002; 129: 1583–1593.

    CAS  PubMed  Google Scholar 

  5. Arnoux V, Nassour M, L'Helgoualc'h A, Hipskind RA, Savagner P . Erk5 controls Slug expression and keratinocyte activation during wound healing. Mol Biol Cell 2008; 19: 4738–4749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Onodera T, Sakai T, Hsu JC-F, Matsumoto K, Chiorini JA, Yamada KM . Btbd7 regulates epithelial cell dynamics and branching morphogenesis. Science 2010; 329: 562–565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shields MA, Krantz SB, Bentrem DJ, Dangi-Garimella S, Munshi HG . Interplay between β1-integrin and Rho signaling regulates differential scattering and motility of pancreatic cancer cells by snail and Slug proteins. J Biol Chem 2012; 287: 6218–6229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Come C, Magnino F, Bibeau F, De Santa Barbara P, Becker KF, Theillet C et al. Snail and slug play distinct roles during breast carcinoma progression. Clin Cancer Res 2006; 12: 5395–5402.

    Article  CAS  PubMed  Google Scholar 

  9. Hajra KM, Chen DYS, Fearon ER . The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Res 2002; 62: 1613–1618.

    CAS  PubMed  Google Scholar 

  10. Proia TA, Keller PJ, Gupta PB, Klebba I, Jones AD, Sedic M et al. Genetic predisposition directs breast cancer phenotype by dictating progenitor cell fate. Cell Stem Cell 2011; 8: 149–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Storci G, Sansone P, Trere D, Tavolari S, Taffurelli M, Ceccarelli C et al. The basal-like breast carcinoma phenotype is regulated by SLUG gene expression. J Pathol 2008; 214: 25–37.

    Article  CAS  PubMed  Google Scholar 

  12. Bolós V, Peinado H, Pérez-Moreno MA, Fraga MF, Esteller M, Cano A . The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci 2003; 116: 499–511.

    Article  PubMed  Google Scholar 

  13. Daniel CW, Strickland P, Friedmann Y . Expression and functional role of E- and P-cadherins in mouse mammary ductal morphogenesis and growth. Dev Biol 1995; 169: 511–519.

    Article  CAS  PubMed  Google Scholar 

  14. Albergaria A, Ribeiro AS, Vieira A-F, Sousa B, Nobre AR, Seruca R et al. P-cadherin role in normal breast development and cancer. Int J Dev Biol 2011; 55: 811–822.

    Article  PubMed  Google Scholar 

  15. Ribeiro AS, Albergaria A, Sousa B, Correia AL, Bracke M, Seruca R et al. Extracellular cleavage and shedding of P-cadherin: a mechanism underlying the invasive behaviour of breast cancer cells. Oncogene 2010; 29: 392–402.

    Article  CAS  PubMed  Google Scholar 

  16. Paredes J, Figueiredo J, Albergaria A, Oliveira P, Carvalho J, Ribeiro AS et al. Epithelial E- and P-cadherins: role and clinical significance in cancer. Biochim Biophys Acta 2012; 1826: 297–311.

    CAS  PubMed  Google Scholar 

  17. Vieira A-F, Ricardo S, Ablett MP, Dionísio MR, Mendes N, Albergaria A et al. P-cadherin is coexpressed with CD44 and CD49f and mediates stem cell properties in basal-like breast cancer. Stem Cells 2012; 30: 854–864.

    Article  CAS  PubMed  Google Scholar 

  18. Behrens J, Löwrick O, Klein HL, Birchmeier W . The E-cadherin promoter: functional analysis of a GC-rich region and an epithelial cell-specific palindromic regulatory element. Proc Natl Acad Sci USA 88: 11495–11499.

    Article  CAS  Google Scholar 

  19. Batlle E, Sancho E, Francí C, Domínguez D, Monfar M, Baulida J et al. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2000; 2: 84–89.

    Article  CAS  PubMed  Google Scholar 

  20. Rembold M, Ciglar L, Yáñez-Cuna JO, Zinzen RP, Girardot C, Jain A et al. A conserved role for Snail as a potentiator of active transcription. Genes Dev 2014; 28: 167–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ye X, Tam WL, Shibue T, Kaygusuz Y, Reinhardt F, Ng Eaton E et al. Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature 2015; 525: 256–260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Radice GL, Ferreira-Cornwell MC, Robinson SD, Rayburn H, Chodosh LA, Takeichi M et al. Precocious mammary gland development in P-cadherin-deficient mice. J Cell Biol 1997; 139: 1025–1032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen H, Zhu G, Li Y, Padia RN, Dong Z, Pan ZK et al. Extracellular signal-regulated kinase signaling pathway regulates breast cancer cell migration by maintaining slug expression. Cancer Res 2009; 69: 9228–9235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Savagner P, Kusewitt DF, Carver EA, Magnino F, Choi C, Gridley T et al. Developmental transcription factor slug is required for effective re-epithelialization by adult keratinocytes. J Cell Physiol 2005; 202: 858–866.

    Article  CAS  PubMed  Google Scholar 

  25. Kurley SJ, Bierie B, Carnahan RH, Lobdell NA, Davis MA, Hofmann I et al. p120-catenin is essential for terminal end bud function and mammary morphogenesis. Development 2012; 139: 1754–1764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Paredes J, Correia AL, Ribeiro AS, Milanezi F, Cameselle-Teijeiro J, Schmitt FC . Breast carcinomas that co-express E- and P-cadherin are associated with p120-catenin cytoplasmic localisation and poor patient survival. J Clin Pathol 2008; 61: 856–862.

    Article  CAS  PubMed  Google Scholar 

  27. Taniuchi K, Nakagawa H, Hosokawa M, Nakamura T, Eguchi H, Ohigashi H et al. Overexpressed P-cadherin/CDH3 promotes motility of pancreatic cancer cells by interacting with p120ctn and activating rho-family GTPases. Cancer Res 2005; 65: 3092–3099.

    Article  CAS  PubMed  Google Scholar 

  28. Reynolds AB, Daniel J, McCrea PD, Wheelock MJ, Wu J, Zhang Z . Identification of a new catenin: the tyrosine kinase substrate p120cas associates with E-cadherin complexes. Mol Cell Biol 1994; 14: 8333–8342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vieira A-F, Ribeiro AS, Dionísio MR, Sousa B, Nobre AR, Albergaria A et al. P-cadherin signals through the laminin receptor α6β4 integrin to induce stem cell and invasive properties in basal-like breast cancer cells. Oncotarget 2014; 5: 679–692.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dohn MR, Brown MV, Reynolds AB . An essential role for p120-catenin in Src- and Rac1-mediated anchorage-independent cell growth. J Cell Biol 2009; 184: 437–450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Noren NK, Liu BP, Burridge K, Kreft B . p120 catenin regulates the actin cytoskeleton via Rho family GTPases. J Cell Biol 2000; 150: 567–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ezzell RM, Goldmann WH, Wang N, Parashurama N, Parasharama N, Ingber DE . Vinculin promotes cell spreading by mechanically coupling integrins to the cytoskeleton. Exp Cell Res 1997; 231: 14–26.

    Article  CAS  PubMed  Google Scholar 

  33. Miyamoto S, Teramoto H, Coso OA, Gutkind JS, Burbelo PD, Akiyama SK et al. Integrin function: molecular hierarchies of cytoskeletal and signaling molecules. The Journal of Cell Biology 1995; 131: 791–805.

    Article  CAS  PubMed  Google Scholar 

  34. Turner CE, Glenney JR, Burridge K . Paxillin: a new vinculin-binding protein present in focal adhesions. The Journal of Cell Biology 1990; 111: 1059–1068.

    Article  CAS  PubMed  Google Scholar 

  35. Sarrió D, Palacios J, Hergueta-Redondo M, Gómez-López G, Cano A, Moreno-Bueno G . Functional characterization of E- and P-cadherin in invasive breast cancer cells. BMC Cancer 2009; 9: 74.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gamallo C, Moreno-Bueno G, Sarrió D, Calero F, Hardisson D, Palacios J . The prognostic significance of P-cadherin in infiltrating ductal breast carcinoma. Mod Pathol 2001; 14: 650–654.

    Article  CAS  PubMed  Google Scholar 

  37. Bernardes N, Ribeiro AS, Abreu S, Mota B, Matos RG, Arraiano CM et al. The bacterial protein azurin impairs invasion and FAK/Src signaling in P-cadherin-overexpressing breast cancer cell models. PLoS One 2013; 8: e69023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Plutoni C, Bazellieres E, Le Borgne-Rochet M, Comunale F, Brugues A, Séveno M et al. P-cadherin promotes collective cell migration via a Cdc42-mediated increase in mechanical forces. J Cell Biol 2016; 212: 199–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Turashvili G, McKinney SE, Goktepe O, Leung SC, Huntsman DG, Gelmon KA et al. P-cadherin expression as a prognostic biomarker in a 3992 case tissue microarray series of breast cancer. Mod Pathol 2010; 24: 64–81.

    Article  PubMed  Google Scholar 

  40. Stefansson IM, Salvesen HB, Akslen LA . Prognostic impact of alterations in P-cadherin expression and related cell adhesion markers in endometrial cancer. J Clin Oncol 2004; 22: 1242–1252.

    Article  CAS  PubMed  Google Scholar 

  41. Kümper S, Ridley AJ . p120ctn and P-cadherin but not E-cadherin regulate cell motility and invasion of DU145 prostate cancer cells. PLoS One 2010; 5: e11801.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rakshit S, Zhang Y, Manibog K, Shafraz O, Sivasankar S . Ideal, catch, and slip bonds in cadherin adhesion. Proc Natl Acad Sci USA 2012; 109: 18815–18820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tanaka-Matakatsu M, Uemura T, Oda H, Takeichi M, Hayashi S . Cadherin-mediated cell adhesion and cell motility in Drosophila trachea regulated by the transcription factor Escargot. Development 1996; 122: 3697–3705.

    CAS  PubMed  Google Scholar 

  44. Hirai Y, Nose A, Kobayashi S, Takeichi M . Expression and role of E- and P-cadherin adhesion molecules in embryonic histogenesis. II. Skin morphogenesis. Development 1989; 105: 271–277.

    CAS  PubMed  Google Scholar 

  45. Nose A, Takeichi M . A novel cadherin cell adhesion molecule: its expression patterns associated with implantation and organogenesis of mouse embryos. J Cell Biol 1986; 103: 2649–2658.

    Article  CAS  PubMed  Google Scholar 

  46. Ribeiro AS, Sousa B, Carreto L, Mendes N, Nobre AR, Ricardo S et al. P-cadherin functional role is dependent on E-cadherin cellular context: a proof of concept using the breast cancer model. J Pathol 2013; 229: 705–718.

    Article  CAS  PubMed  Google Scholar 

  47. Savagner P. Epithelial–mesenchymal transitions. In: Cellular Adhesion in Development and Disease. Elsevier: Amsterdam, Netherlands, 2015, pp 273–300.

    Google Scholar 

  48. Nguyen-Ngoc K-V, Cheung KJ, Brenot A, Shamir ER, Gray RS, Hines WC et al. ECM microenvironment regulates collective migration and local dissemination in normal and malignant mammary epithelium. Proc Natl Acad Sci USA 2012; 109: E2595–E2604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hatta K, Takeichi M . Expression of N-cadherin adhesion molecules associated with early morphogenetic events in chick development. Nature 1986; 320: 447–449.

    Article  CAS  PubMed  Google Scholar 

  50. Nieman MT, Prudoff RS, Johnson KR, Wheelock MJ . N-cadherin promotes motility in human breast cancer cells regardless of their E-cadherin expression. J Cell Biol 1999; 147: 631–644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lamouille S, Xu J, Derynck R . Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 2014; 15: 178–196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Uygur B, Wu WS . SLUG promotes prostate cancer cell migration and invasion via CXCR4/CXCL12 axis. Mol Cancer 2011; 10: 139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tang Y, Feinberg T, Keller ET, Li XY, Weiss SJ . Snail/Slug binding interactions with YAP/TAZ control skeletal stem cell self-renewal and differentiation. Nat Cell Biol 2016; 18: 917–929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Faraldo MM, Teulière J, Deugnier M-A, Birchmeier W, Huelsken J, Thiery JP et al. beta-Catenin regulates P-cadherin expression in mammary basal epithelial cells. FEBS Lett 2007; 581: 831–836.

    Article  CAS  PubMed  Google Scholar 

  55. Albergaria A, Resende C, Nobre AR, Ribeiro AS, Sousa B, Machado JC et al. CCAAT/enhancer binding protein β (C/EBPβ) isoforms as transcriptional regulators of the Pro-invasive CDH3/P-cadherin gene in human breast cancer cells. PLoS One 2013; 8: e55749–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shimomura Y, Wajid M, Shapiro L, Christiano AM . P-cadherin is a p63 target gene with a crucial role in the developing human limb bud and hair follicle. Development 2008; 135: 743–753.

    Article  CAS  PubMed  Google Scholar 

  57. Ko SY, Naora H . HOXA9 promotes homotypic and heterotypic cell interactions that facilitate ovarian cancer dissemination via its induction of P-cadherin. Mol Cancer 2014; 13: 1–13.

    Article  Google Scholar 

  58. Ray PS, Wang J, Qu Y, Sim M-S, Shamonki J, Bagaria SP et al. FOXC1 is a potential prognostic biomarker with functional significance in basal-like breast cancer. Cancer Res 2010; 70: 3870–3876.

    Article  CAS  PubMed  Google Scholar 

  59. Thuault S, Hayashi S, Lagirand-Cantaloube J, Plutoni C, Comunale F, Delattre O et al. P-cadherin is a direct PAX3-FOXO1A target involved in alveolar rhabdomyosarcoma aggressiveness. Oncogene 2013; 32: 1876–1887.

    Article  CAS  PubMed  Google Scholar 

  60. Albergaria A, Ribeiro AS, Pinho S, Milanezi F, Carneiro V, Sousa B et al. ICI 182,780 induces P-cadherin overexpression in breast cancer cells through chromatin remodelling at the promoter level: a role for C/EBPbeta in CDH3 gene activation. Hum Mol Genet 2010; 19: 2554–2566.

    Article  CAS  PubMed  Google Scholar 

  61. Grimm SL, Rosen JM . The role of C/EBPbeta in mammary gland development and breast cancer. J Mammary Gland Biol Neoplasia 2003; 8: 191–204.

    Article  PubMed  Google Scholar 

  62. Medina D, Oborn CJ, Kittrell FS, Ullrich RL . Properties of mouse mammary epithelial cell lines characterized by in vivo transplantation and in vitro immunocytochemical methods. J Natl Cancer Inst 1986; 76: 1143–1156.

    CAS  PubMed  Google Scholar 

  63. Deugnier M-A, Faraldo MM, Teulière J, Thiery JP, Medina D, Glukhova MA . Isolation of mouse mammary epithelial progenitor cells with basal characteristics from the Comma-Dbeta cell line. Dev Biol 2006; 293: 414–425.

    Article  CAS  PubMed  Google Scholar 

  64. Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE . Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 1988; 106: 761–771.

    Article  CAS  PubMed  Google Scholar 

  65. Annicotte J-S, Fayard E, Swift GH, Selander L, Edlund H, Tanaka T et al. Pancreatic-duodenal homeobox 1 regulates expression of liver receptor homolog 1 during pancreas development. Mol Cell Biol 2003; 23: 6713–6724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ et al. The genomic and transcriptomic architecture of 2000 breast tumours reveals novel subgroups. Nature 2012; 486: 346–352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pereira B, Chin SF, Rueda OM, Vollan HK, Provenzano E, Bardwell HA et al. The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat Commun 2016; 7: 11479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Györffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat 2010; 123: 725–731.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the Fondation de France (no. E 2009 006685), the Ligue Nationale contre le Cancer, the Ligue Régionale contre le Cancer (Languedoc-Roussillon and Ardèche) and Aide à la Recherche en Partenariat avec Entreprises (ARPE-Languedoc-Roussillon). In addition, the authors gratefully acknowledge support from the Ligue Régionale (Ardèche) and Nationale contre le Cancer for Y Idoux-Gillet and Association pour la Recherche sur le Cancer for M Nassour. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We are grateful to L Larue for plasmid vector Ecad, Professor M Takeichi for Pcad vector, Marisa M Faraldo and Marie-Ange Deugnier for Luciferase gene reporter and constructive discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Savagner.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Idoux-Gillet, Y., Nassour, M., Lakis, E. et al. Slug/Pcad pathway controls epithelial cell dynamics in mammary gland and breast carcinoma. Oncogene 37, 578–588 (2018). https://doi.org/10.1038/onc.2017.355

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.355

This article is cited by

Search

Quick links