Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Loss of RhoA promotes skin tumor formation and invasion by upregulation of RhoB

Abstract

Cellular movement is controlled by small GTPases, such as RhoA. Although migration is crucial for cancer cell invasion, the specific role of RhoA in tumor formation is unclear. Inducing skin tumors in mice with a keratinocyte-restricted loss of RhoA, we observed increased tumor frequency, growth and invasion. In vitro invasion assays revealed that in the absence of RhoA cell invasiveness is increased in a Rho-associated protein kinase (ROCK) activation and cell contraction-dependent manner. Surprisingly, loss of RhoA causes increased Rho signaling via overcompensation by RhoB because of reduced lysosomal degradation of RhoB in Gamma-aminobutyric acid receptor-associated protein (GABARAP)+ autophagosomes and endosomes. In the absence of RhoA, RhoB relocalized to the plasma membrane and functionally replaced RhoA with respect to invasion, clonogenic growth and survival. Our data demonstrate for the first time that RhoA is a tumor suppressor in 7,12-dimethylbenz[a]anthracene/12-O-tetradecanoylphorbol 13-acetate skin carcinogenesis and identify Rho signaling dependent on RhoA and RhoB as a potent driver of tumor progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Sahai E, Marshall CJ . RHO-GTPases and cancer. Nat Rev Cancer 2002; 2: 133–142.

    Article  Google Scholar 

  2. Pedersen E, Brakebusch C . Rho GTPase function in development: how in vivo models change our view. Exp Cell Res 2012; 318: 1779–1787.

    Article  CAS  Google Scholar 

  3. Karlsson R, Pedersen ED, Wang Z, Brakebusch C . Rho GTPase function in tumorigenesis. Biochim Biophys Acta 2009; 1796: 91–98.

    CAS  PubMed  Google Scholar 

  4. Iden S, Collard JG . Crosstalk between small GTPases and polarity proteins in cell polarization. Nat Rev Mol Cell Biol 2008; 9: 846–859.

    Article  CAS  Google Scholar 

  5. Wheeler AP, Ridley AJ . Why three Rho proteins? RhoA, RhoB, RhoC, and cell motility. Exp Cell Res 2004; 301: 43–49.

    Article  CAS  Google Scholar 

  6. Ridley A . GTPase switch: Ras then Rho and Rac. Nat Cell Biol 2013; 15: 337.

    Article  CAS  Google Scholar 

  7. Rath N, Olson MF . Rho-associated kinases in tumorigenesis: re-considering ROCK inhibition for cancer therapy. EMBO Rep 2012; 13: 900–908.

    Article  CAS  Google Scholar 

  8. Rodrigues P, Macaya I, Bazzocco S, Mazzolini R, Andretta E, Dopeso H et al. RHOA inactivation enhances Wnt signalling and promotes colorectal cancer. Nat Commun 2014; 5: 5458.

    Article  CAS  Google Scholar 

  9. Palomero T, Couronne L, Khiabanian H, Kim MY, Ambesi-Impiombato A, Perez-Garcia A et al. Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas. Nat Genet 2014; 46: 166–170.

    Article  CAS  Google Scholar 

  10. Yoo HY, Sung MK, Lee SH, Kim S, Lee H, Park S et al. A recurrent inactivating mutation in RHOA GTPase in angioimmunoblastic T cell lymphoma. Nat Genet 2014; 46: 371–375.

    Article  CAS  Google Scholar 

  11. Sakata-Yanagimoto M, Enami T, Yoshida K, Shiraishi Y, Ishii R, Miyake Y et al. Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat Genet 2014; 46: 171–175.

    Article  CAS  Google Scholar 

  12. Vallois D, Dobay MP, Morin RD, Lemonnier F, Missiaglia E, Juilland M et al. Activating mutations in genes related to TCR signaling in angioimmunoblastic and other follicular helper T-cell-derived lymphomas. Blood 2016; 128: 1490–1502.

    Article  CAS  Google Scholar 

  13. Nagata Y, Kontani K, Enami T, Kataoka K, Ishii R, Totoki Y et al. Variegated RHOA mutations in adult T-cell leukemia/lymphoma. Blood 2016; 127: 596–604.

    Article  CAS  Google Scholar 

  14. Kakiuchi M, Nishizawa T, Ueda H, Gotoh K, Tanaka A, Hayashi A et al. Recurrent gain-of-function mutations of RHOA in diffuse-type gastric carcinoma. Nat Genet 2014; 46: 583–587.

    Article  CAS  Google Scholar 

  15. Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 2014; 505: 495–501.

    Article  CAS  Google Scholar 

  16. Vega FM, Colomba A, Reymond N, Thomas M, Ridley AJ . RhoB regulates cell migration through altered focal adhesion dynamics. Open Biol 2012; 2: 120076.

    Article  Google Scholar 

  17. Alfano D, Ragno P, Stoppelli MP, Ridley AJ . RhoB regulates uPAR signalling. J Cell Sci 2012; 125 (Pt 10): 2369–2380.

    Article  CAS  Google Scholar 

  18. Vega FM, Ridley AJ . The RhoB small GTPase in physiology and disease. Small GTPases 2016, e-pub ahead of print 22 November 2016 doi:10.1080/21541248.2016.1253528.

    Article  Google Scholar 

  19. Liu AX, Rane N, Liu JP, Prendergast GC . RhoB is dispensable for mouse development, but it modifies susceptibility to tumor formation as well as cell adhesion and growth factor signaling in transformed cells. Mol Cell Biol 2001; 21: 6906–6912.

    Article  CAS  Google Scholar 

  20. Vega FM, Fruhwirth G, Ng T, Ridley AJ . RhoA and RhoC have distinct roles in migration and invasion by acting through different targets. J Cell Biol 2011; 193: 655–665.

    Article  CAS  Google Scholar 

  21. Jackson B, Peyrollier K, Pedersen E, Basse A, Karlsson R, Wang Z et al. RhoA is dispensable for skin development, but crucial for contraction and directed migration of keratinocytes. Mol Biol Cell 2011; 22: 593–605.

    Article  CAS  Google Scholar 

  22. Nassar D, Latil M, Boeckx B, Lambrechts D, Blanpain C . Genomic landscape of carcinogen-induced and genetically induced mouse skin squamous cell carcinoma. Nat Med 2015; 21: 946–954.

    Article  CAS  Google Scholar 

  23. Filler RB, Roberts SJ, Girardi M . Cutaneous two-stage chemical carcinogenesis. CSH Protoc 2007; 2007: pdb prot4837; doi:10.1101/pdb.prot4837.

    Article  Google Scholar 

  24. Schober M, Fuchs E . Tumor-initiating stem cells of squamous cell carcinomas and their control by TGF-beta and integrin/focal adhesion kinase (FAK) signaling. Proc Natl Acad Sci USA 2011; 108: 10544–10549.

    Article  CAS  Google Scholar 

  25. Wilhelmsen K, Litjens SH, Sonnenberg A . Multiple functions of the integrin alpha6beta4 in epidermal homeostasis and tumorigenesis. Mol Cell Biol 2006; 26: 2877–2886.

    Article  CAS  Google Scholar 

  26. Worthylake RA, Burridge K . RhoA and ROCK promote migration by limiting membrane protrusions. J Biol Chem 2003; 278: 13578–13584.

    Article  CAS  Google Scholar 

  27. Totsukawa G, Wu Y, Sasaki Y, Hartshorne DJ, Yamakita Y, Yamashiro S et al. Distinct roles of MLCK and ROCK in the regulation of membrane protrusions and focal adhesion dynamics during cell migration of fibroblasts. J Cell Biol 2004; 164: 427–439.

    Article  CAS  Google Scholar 

  28. Jennings RT, Strengert M, Hayes P, El-Benna J, Brakebusch C, Kubica M et al. RhoA determines disease progression by controlling neutrophil motility and restricting hyperresponsiveness. Blood 2014; 123: 3635–3645.

    Article  CAS  Google Scholar 

  29. Howe GA, Addison CL . RhoB controls endothelial cell morphogenesis in part via negative regulation of RhoA. Vasc Cell 2012; 4: 1.

    Article  CAS  Google Scholar 

  30. Meyer N, Peyret-Lacombe A, Canguilhem B, Medale-Giamarchi C, Mamouni K, Cristini A et al. RhoB promotes cancer initiation by protecting keratinocytes from UVB-induced apoptosis but limits tumor aggressiveness. J Invest Dermatol 2014; 134: 203–212.

    Article  CAS  Google Scholar 

  31. Perez-Sala D, Boya P, Ramos I, Herrera M, Stamatakis K . The C-terminal sequence of RhoB directs protein degradation through an endo-lysosomal pathway. PLoS One 2009; 4: e8117.

    Article  Google Scholar 

  32. Valero RA, Oeste CL, Stamatakis K, Ramos I, Herrera M, Boya P et al. Structural determinants allowing endolysosomal sorting and degradation of endosomal GTPases. Traffic 2010; 11: 1221–1233.

    Article  CAS  Google Scholar 

  33. Schaaf MB, Keulers TG, Vooijs MA, Rouschop KM . LC3/GABARAP family proteins: autophagy-(un)related functions. FASEB J 2016; 12: 3961–3978.

    Article  Google Scholar 

  34. Roberts PJ, Mitin N, Keller PJ, Chenette EJ, Madigan JP, Currin RO et al. Rho Family GTPase modification and dependence on CAAX motif-signaled posttranslational modification. J Biol Chem 2008; 283: 25150–25163.

    Article  CAS  Google Scholar 

  35. Boulter E, Garcia-Mata R, Guilluy C, Dubash A, Rossi G, Brennwald PJ et al. Regulation of Rho GTPase crosstalk, degradation and activity by RhoGDI1. Nat Cell Biol 2010; 12: 477–483.

    Article  CAS  Google Scholar 

  36. Mazieres J, Tillement V, Allal C, Clanet C, Bobin L, Chen Z et al. Geranylgeranylated, but not farnesylated, RhoB suppresses Ras transformation of NIH-3T3 cells. Exp Cell Res 2005; 304: 354–364.

    Article  CAS  Google Scholar 

  37. Michaelson D, Silletti J, Murphy G, D'Eustachio P, Rush M, Philips MR . Differential localization of Rho GTPases in live cells: regulation by hypervariable regions and RhoGDI binding. J Cell Biol 2001; 152: 111–126.

    Article  CAS  Google Scholar 

  38. Ho TT, Merajver SD, Lapiere CM, Nusgens BV, Deroanne CF . RhoA-GDP regulates RhoB protein stability. Potential involvement of RhoGDIalpha. J Biol Chem 2008; 283: 21588–21598.

    Article  CAS  Google Scholar 

  39. Lee S, Kumar S . Actomyosin stress fiber mechanosensing in 2D and 3D. F1000Res 2016; 5: 2261.

    Article  Google Scholar 

  40. Chapman S, McDermott DH, Shen K, Jang MK, McBride AA . The effect of Rho kinase inhibition on long-term keratinocyte proliferation is rapid and conditional. Stem Cell Res Ther 2014; 5: 60.

    Article  Google Scholar 

  41. Arshad A, Deutsch E, Vozenin MC . Simultaneous irradiation of fibroblasts and carcinoma cells repress the secretion of soluble factors able to stimulate carcinoma cell migration. PLoS One 2015; 10: e0115447.

    Article  Google Scholar 

  42. Samuel MS, Lopez JI, McGhee EJ, Croft DR, Strachan D, Timpson P et al. Actomyosin-mediated cellular tension drives increased tissue stiffness and beta-catenin activation to induce epidermal hyperplasia and tumor growth. Cancer Cell 2011; 19: 776–791.

    Article  CAS  Google Scholar 

  43. Wang Z, Pedersen E, Basse A, Lefever T, Peyrollier K, Kapoor S et al. Rac1 is crucial for Ras-dependent skin tumor formation by controlling Pak1-Mek-Erk hyperactivation and hyperproliferation in vivo. Oncogene 2010; 29: 3362–3373.

    Article  CAS  Google Scholar 

  44. Chrostek A, Wu X, Quondamatteo F, Hu R, Sanecka A, Niemann C et al. Rac1 is crucial for hair follicle integrity but is not essential for maintenance of the epidermis. Mol Cell Biol 2006; 26: 6957–6970.

    Article  CAS  Google Scholar 

  45. Pedersen E, Basse A, Lefever T, Peyrollier K, Brakebusch C . Rho GTPase knockout induction in primary keratinocytes from adult mice. Methods Mol Biol 2012; 827: 157–166.

    Article  CAS  Google Scholar 

  46. Wang L, Jin Q, Lee JE, Su IH, Ge K . Histone H3K27 methyltransferase Ezh2 represses Wnt genes to facilitate adipogenesis. Proc Natl Acad Sci USA 2010; 107: 7317–7322.

    Article  CAS  Google Scholar 

  47. Jensen KB, Driskell RR, Watt FM . Assaying proliferation and differentiation capacity of stem cells using disaggregated adult mouse epidermis. Nat Protoc 2010; 5: 898–911.

    Article  CAS  Google Scholar 

  48. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 2013; 6 pl1.

    Article  Google Scholar 

  49. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2012; 2: 401–404.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Volkan Turan and Anna Fossum for expert technical help. We thank Dr Anders H Lund and Dr Klemens Rottner for kindly providing antibodies and plasmids, and Dr Kim Bak Jensen for critical reading of the manuscript and advice. The ultrastructural work was carried out in the Centre of Microscopy and Imaging affiliated to Anatomy at NUI Galway.

Author contributions

AG-M planned and performed experiments, analyzed data and wrote the manuscript. HL, EP, KP, AS and FQ performed experiments and analyzed data. KR provided crucial advice and tools. CB planned experiments, analyzed data and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Brakebusch.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Mariscal, A., Li, H., Pedersen, E. et al. Loss of RhoA promotes skin tumor formation and invasion by upregulation of RhoB. Oncogene 37, 847–860 (2018). https://doi.org/10.1038/onc.2017.333

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.333

This article is cited by

Search

Quick links