Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Epigenetic regulation of RNA polymerase III transcription in early breast tumorigenesis

Abstract

RNA polymerase III (Pol III) transcribes medium-sized non-coding RNAs (collectively termed Pol III genes). Emerging diverse roles of Pol III genes suggest that individual Pol III genes are exquisitely regulated by transcription and epigenetic factors. Here we report global Pol III expression/methylation profiles and molecular mechanisms of Pol III regulation that have not been as extensively studied, using nc886 as a representative Pol III gene. In a human mammary epithelial cell system that recapitulates early breast tumorigenesis, the fraction of actively transcribed Pol III genes increases reaching a plateau during immortalization. Hyper-methylation of Pol III genes inhibits Pol III binding to DNA via inducing repressed chromatin and is a determinant for the Pol III repertoire. When Pol III genes are hypo-methylated, MYC amplifies their transcription, regardless of its recognition DNA motif. Thus, Pol III expression during tumorigenesis is delineated by methylation and magnified by MYC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

Sequence Read Archive

References

  1. White RJ . RNA polymerase III transcription and cancer. Oncogene 2004; 23: 3208–3216.

    Article  CAS  Google Scholar 

  2. Dang CV . MYC on the path to cancer. Cell 2012; 149: 22–35.

    Article  CAS  Google Scholar 

  3. Lin CY, Loven J, Rahl PB, Paranal RM, Burge CB, Bradner JE et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell 2012; 151: 56–67.

    Article  CAS  Google Scholar 

  4. Gomez-Roman N, Grandori C, Eisenman RN, White RJ . Direct activation of RNA polymerase III transcription by c-Myc. Nature 2003; 421: 290–294.

    Article  CAS  Google Scholar 

  5. Bhargava P . Epigenetic regulation of transcription by RNA polymerase III. Biochim Biophys Acta 2013; 1829: 1015–1025.

    Article  CAS  Google Scholar 

  6. Park JL, Lee YS, Kunkeaw N, Kim SY, Kim IH, Lee YS . Epigenetic regulation of noncoding RNA transcription by mammalian RNA polymerase III. Epigenomics 2017; 9: 171–187.

    Article  CAS  Google Scholar 

  7. Klose RJ, Bird AP . Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 2006; 31: 89–97.

    Article  CAS  Google Scholar 

  8. Besser D, Gotz F, Schulze-Forster K, Wagner H, Kroger H, Simon D . DNA methylation inhibits transcription by RNA polymerase III of a tRNA gene, but not of a 5S rRNA gene. FEBS Lett 1990; 269: 358–362.

    Article  CAS  Google Scholar 

  9. Selvakumar T, Gjidoda A, Hovde SL, Henry RW . Regulation of human RNA polymerase III transcription by DNMT1 and DNMT3a DNA methyltransferases. J Biol Chem 2012; 287: 7039–7050.

    Article  CAS  Google Scholar 

  10. Hu S, Wu J, Chen L, Shan G . Signals from noncoding RNAs: unconventional roles for conventional pol III transcripts. Int J Biochem Cell Biol 2012; 44: 1847–1851.

    Article  CAS  Google Scholar 

  11. Lee HS, Lee K, Jang HJ, Lee GK, Park JL, Kim SY et al. Epigenetic silencing of the non-coding RNA nc886 provokes oncogenes during human esophageal tumorigenesis. Oncotarget 2014; 5: 3472–3481.

    PubMed  PubMed Central  Google Scholar 

  12. Lee KS, Park JL, Lee K, Richardson LE, Johnson BH, Lee HS et al. nc886, a non-coding RNA of anti-proliferative role, is suppressed by CpG DNA methylation in human gastric cancer. Oncotarget 2014; 5: 3944–3955.

    PubMed  PubMed Central  Google Scholar 

  13. Cao J, Song Y, Bi N, Shen J, Liu W, Fan J et al. DNA methylation-mediated repression of miR-886-3p predicts poor outcome of human small cell lung cancer. Cancer Res 2013; 73: 3326–3335.

    Article  CAS  Google Scholar 

  14. Treppendahl MB, Qiu X, Sogaard A, Yang X, Nandrup-Bus C, Hother C et al. Allelic methylation levels of the noncoding VTRNA2-1 located on chromosome 5q31.1 predict outcome in AML. Blood 2012; 119: 206–216.

    Article  CAS  Google Scholar 

  15. Liu WM, Maraia RJ, Rubin CM, Schmid CW . Alu transcripts: cytoplasmic localisation and regulation by DNA methylation. Nucleic Acids Res 1994; 22: 1087–1095.

    Article  CAS  Google Scholar 

  16. Banati F, Koroknai A, Salamon D, Takacs M, Minarovits-Kormuta S, Wolf H et al. CpG-methylation silences the activity of the RNA polymerase III transcribed EBER-1 promoter of Epstein-Barr virus. FEBS Lett 2008; 582: 705–709.

    Article  CAS  Google Scholar 

  17. Juttermann R, Hosokawa K, Kochanek S, Doerfler W . Adenovirus type 2 VAI RNA transcription by polymerase III is blocked by sequence-specific methylation. J Virol 1991; 65: 1735–1742.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Xie H, Wang M, Bonaldo Mde F, Rajaram V, Stellpflug W, Smith C et al. Epigenomic analysis of Alu repeats in human ependymomas. Proc Natl Acad Sci USA 2010; 107: 6952–6957.

    Article  CAS  Google Scholar 

  19. Varshney D, Vavrova-Anderson J, Oler AJ, Cowling VH, Cairns BR, White RJ . SINE transcription by RNA polymerase III is suppressed by histone methylation but not by DNA methylation. Nat Commun 2015; 6: 6569.

    Article  CAS  Google Scholar 

  20. Fu Y, Lee I, Lee YS, Bao X . Small non-coding transfer RNA-derived RNA fragments (tRFs): their biogenesis, function and implication in human diseases. Genomics Inform 2015; 13: 94–101.

    Article  Google Scholar 

  21. Stampfer MR, LaBarge MA, Garbe JC . An integrated human mammary epithelial cell culture System for studying carcinogenesis and aging. In: Schatten H (ed). Cell Mol Biol Breast Cancer. Springer: NY, USA, 2013, pp 323–361.

    Chapter  Google Scholar 

  22. Hines WC, Kuhn I, Thi K, Chu B, Stanford-Moore G, Sampayo R et al. 184AA3: a xenograft model of ER+ breast adenocarcinoma. Breast Cancer Res Treat 2016; 155: 37–52.

    Article  CAS  Google Scholar 

  23. Lee JK, Garbe JC, Vrba L, Miyano M, Futscher BW, Stampfer MR et al. Age and the means of bypassing stasis influence the intrinsic subtype of immortalized human mammary epithelial cells. Front Cell Dev Biol 2015; 3: 13.

    Article  Google Scholar 

  24. Garbe JC, Vrba L, Sputova K, Fuchs L, Novak P, Brothman AR et al. Immortalization of normal human mammary epithelial cells in two steps by direct targeting of senescence barriers does not require gross genomic alterations. Cell Cycle 2014; 13: 3423–3435.

    Article  CAS  Google Scholar 

  25. Garbe JC, Bhattacharya S, Merchant B, Bassett E, Swisshelm K, Feiler HS et al. Molecular distinctions between stasis and telomere attrition senescence barriers shown by long-term culture of normal human mammary epithelial cells. Cancer Res 2009; 69: 7557–7568.

    Article  CAS  Google Scholar 

  26. Stampfer MR, Garbe J, Nijjar T, Wigington D, Swisshelm K, Yaswen P . Loss of p53 function accelerates acquisition of telomerase activity in indefinite lifespan human mammary epithelial cell lines. Oncogene 2003; 22: 5238–5251.

    Article  CAS  Google Scholar 

  27. Stampfer MR, Bartley JC . Induction of transformation and continuous cell lines from normal human mammary epithelial cells after exposure to benzo[a]pyrene. Proc Natl Acad Sci USA 1985; 82: 2394–2398.

    Article  CAS  Google Scholar 

  28. Oler AJ, Alla RK, Roberts DN, Wong A, Hollenhorst PC, Chandler KJ et al. Human RNA polymerase III transcriptomes and relationships to Pol II promoter chromatin and enhancer-binding factors. Nat Struct Mol Biol 2010; 17: 620–628.

    Article  CAS  Google Scholar 

  29. Alla RK, Cairns BR . RNA polymerase III transcriptomes in human embryonic stem cells and induced pluripotent stem cells, and relationships with pluripotency transcription factors. PLoS ONE 2014; 9: e85648.

    Article  Google Scholar 

  30. Barski A, Chepelev I, Liko D, Cuddapah S, Fleming AB, Birch J et al. Pol II and its associated epigenetic marks are present at Pol III-transcribed noncoding RNA genes. Nat Struct Mol Biol 2010; 17: 629–634.

    Article  CAS  Google Scholar 

  31. Canella D, Praz V, Reina JH, Cousin P, Hernandez N . Defining the RNA polymerase III transcriptome: genome-wide localization of the RNA polymerase III transcription machinery in human cells. Genome Res 2010; 20: 710–721.

    Article  CAS  Google Scholar 

  32. Carriere L, Graziani S, Alibert O, Ghavi-Helm Y, Boussouar F, Humbertclaude H et al. Genomic binding of Pol III transcription machinery and relationship with TFIIS transcription factor distribution in mouse embryonic stem cells. Nucleic Acids Res 2012; 40: 270–283.

    Article  CAS  Google Scholar 

  33. Moqtaderi Z, Wang J, Raha D, White RJ, Snyder M, Weng Z et al. Genomic binding profiles of functionally distinct RNA polymerase III transcription complexes in human cells. Nat Struct Mol Biol 2010; 17: 635–640.

    Article  CAS  Google Scholar 

  34. Canella D, Bernasconi D, Gilardi F, LeMartelot G, Migliavacca E, Praz V et al. A multiplicity of factors contributes to selective RNA polymerase III occupancy of a subset of RNA polymerase III genes in mouse liver. Genome Res 2012; 22: 666–680.

    Article  CAS  Google Scholar 

  35. Deaton AM, Bird A . CpG islands and the regulation of transcription. Genes Dev 2011; 25: 1010–1022.

    Article  CAS  Google Scholar 

  36. Ehrlich M . DNA methylation in cancer: too much, but also too little. Oncogene 2002; 21: 5400–5413.

    Article  CAS  Google Scholar 

  37. Lee K, Kunkeaw N, Jeon SH, Lee I, Johnson BH, Kang GY et al. Precursor miR-886, a novel noncoding RNA repressed in cancer, associates with PKR and modulates its activity. RNA 2011; 17: 1076–1089.

    Article  CAS  Google Scholar 

  38. Lee EK, Hong SH, Shin S, Lee HS, Lee JS, Park EJ et al. nc886, a non-coding RNA and suppressor of PKR, exerts an oncogenic function in thyroid cancer. Oncotarget 2016; 7: 75000–75012.

    PubMed  PubMed Central  Google Scholar 

  39. Schramm L, Hernandez N . Recruitment of RNA polymerase III to its target promoters. Genes Dev 2002; 16: 2593–2620.

    Article  CAS  Google Scholar 

  40. Felton-Edkins ZA, Kenneth NS, Brown TR, Daly NL, Gomez-Roman N, Grandori C et al. Direct regulation of RNA polymerase III transcription by RB, p53 and c-Myc. Cell Cycle 2003; 2: 181–184.

    Article  CAS  Google Scholar 

  41. Winter AG, Sourvinos G, Allison SJ, Tosh K, Scott PH, Spandidos DA et al. RNA polymerase III transcription factor TFIIIC2 is overexpressed in ovarian tumors. Proc Natl Acad Sci USA 2000; 97: 12619–12624.

    Article  CAS  Google Scholar 

  42. Felton-Edkins ZA, White RJ . Multiple mechanisms contribute to the activation of RNA polymerase III transcription in cells transformed by papovaviruses. J Biol Chem 2002; 277: 48182–48191.

    Article  CAS  Google Scholar 

  43. Chen W, Bocker W, Brosius J, Tiedge H . Expression of neural BC200 RNA in human tumours. J Pathol 1997; 183: 345–351.

    Article  CAS  Google Scholar 

  44. Chen W, Heierhorst J, Brosius J, Tiedge H . Expression of neural BC1 RNA: induction in murine tumours. Eur J Cancer 1997; 33: 288–292.

    Article  CAS  Google Scholar 

  45. Novak P, Jensen TJ, Garbe JC, Stampfer MR, Futscher BW . Stepwise DNA methylation changes are linked to escape from defined proliferation barriers and mammary epithelial cell immortalization. Cancer Res 2009; 69: 5251–5258.

    Article  CAS  Google Scholar 

  46. Silver MJ, Kessler NJ, Hennig BJ, Dominguez-Salas P, Laritsky E, Baker MS et al. Independent genomewide screens identify the tumor suppressor VTRNA2-1 as a human epiallele responsive to periconceptional environment. Genome Biol 2015; 16: 118.

    Article  Google Scholar 

  47. Romanelli V, Nakabayashi K, Vizoso M, Moran S, Iglesias-Platas I, Sugahara N et al. Variable maternal methylation overlapping the nc886/vtRNA2-1 locus is locked between hypermethylated repeats and is frequently altered in cancer. Epigenetics 2014; 9: 783–790.

    Article  CAS  Google Scholar 

  48. Fuks F . DNA methylation and histone modifications: teaming up to silence genes. Curr Opin Genet Dev 2005; 15: 490–495.

    Article  CAS  Google Scholar 

  49. Liu WM, Schmid CW . Proposed roles for DNA methylation in Alu transcriptional repression and mutational inactivation. Nucleic Acids Res 1993; 21: 1351–1359.

    Article  CAS  Google Scholar 

  50. Bartke T, Vermeulen M, Xhemalce B, Robson SC, Mann M, Kouzarides T . Nucleosome-interacting proteins regulated by DNA and histone methylation. Cell 2010; 143: 470–484.

    Article  CAS  Google Scholar 

  51. Ong CT, Corces VG . CTCF: an architectural protein bridging genome topology and function. Nat Rev Genet 2014; 15: 234–246.

    Article  CAS  Google Scholar 

  52. Kadauke S, Blobel GA . Chromatin loops in gene regulation. Biochim Biophys Acta 2009; 1789: 17–25.

    Article  CAS  Google Scholar 

  53. Messeguer X, Escudero R, Farre D, Nunez O, Martinez J, Alba MM . PROMO: detection of known transcription regulatory elements using species-tailored searches. Bioinformatics 2002; 18: 333–334.

    Article  CAS  Google Scholar 

  54. Guccione E, Martinato F, Finocchiaro G, Luzi L, Tizzoni L, Dall' Olio V et al. Myc-binding-site recognition in the human genome is determined by chromatin context. Nat Cell Biol 2006; 8: 764–770.

    Article  CAS  Google Scholar 

  55. Kenneth NS, Ramsbottom BA, Gomez-Roman N, Marshall L, Cole PA, White RJ . TRRAP and GCN5 are used by c-Myc to activate RNA polymerase III transcription. Proc Natl Acad Sci USA 2007; 104: 14917–14922.

    Article  CAS  Google Scholar 

  56. Labarge MA, Garbe JC, Stampfer MR . Processing of human reduction mammoplasty and mastectomy tissues for cell culture. J Vis Exp 2013; doi: 10.3791/50011.

  57. Garbe JC, Holst CR, Bassett E, Tlsty T, Stampfer MR . Inactivation of p53 function in cultured human mammary epithelial cells turns the telomere-length dependent senescence barrier from agonescence into crisis. Cell Cycle 2007; 6: 1927–1936.

    Article  CAS  Google Scholar 

  58. Park K, Park JH, Yang WJ, Lee JJ, Song MJ, Kim HP . Transcriptional activation of the IL31 gene by NFAT and STAT6. J Leukoc Biol 2012; 91: 245–257.

    Article  CAS  Google Scholar 

  59. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009; 25: 2078–2079.

    Article  Google Scholar 

  60. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 2010; 38: 576–589.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Research Scholar Grant, RSG-12-187-01—RMC from the American Cancer Society to YSL; grants NRF-2012M3A9D1054670 and NRF-2014M3C9A3068554 funded by the Ministry of Science, ICT and Future Planning and KRIBB Research Initiative to S-YK; a grant 2016R1A2B4014183 and 2017M3C9A5029978 funded by National Research Foundation of Korea to H-PK; National Cancer Center (Korea) intramural project # 1610090 to Y-SL; and US Department of Energy under Contract No. DE-AC02-05CH11231 to MRS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H-P Kim, S-Y Kim or Y S Lee.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, JL., Lee, YS., Song, MJ. et al. Epigenetic regulation of RNA polymerase III transcription in early breast tumorigenesis. Oncogene 36, 6793–6804 (2017). https://doi.org/10.1038/onc.2017.285

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.285

This article is cited by

Search

Quick links