Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Inhibiting MYC binding to the E-box DNA motif by ME47 decreases tumour xenograft growth

Abstract

Developing therapeutics to effectively inhibit the MYC oncoprotein would mark a key advance towards cancer patient care as MYC is deregulated in over 50% of human cancers. MYC deregulation is correlated with aggressive disease and poor patient outcome. Despite strong evidence in mouse models that inhibiting MYC would significantly impact tumour cell growth and patient survival, traditional approaches have not yet yielded the urgently needed therapeutic agents that directly target MYC. MYC functions through its interaction with MAX to regulate gene transcription by binding to E-box DNA response elements of MYC target genes. Here we used a structure-based strategy to design ME47, a small minimalist hybrid protein (MHP) able to disrupt the MAX:E-box interaction/binding and block transcriptional MYC activity. We show that inducing ME47 expression in established tumour xenografts inhibits tumour growth and decreases cellular proliferation. Mechanistically, we show by chromatin immunoprecipitation that ME47 binds to E-box binding sites of MYC target genes. Moreover, ME47 occupancy decreases MYC:DNA interaction at its cognate E-box binding sites. Taken together, ME47 is a prototypic MHP inhibitor that antagonizes tumour cell growth in vitro and in vivo and inhibits the interaction of MYC with DNA E-box elements. These results support ME47’s role as a MYC inhibitor and suggest that MHPs provide an alternative therapeutic targeting system that can be used to target transcription factors important in human diseases, including cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Dang CV . MYC on the path to cancer. Cell 2012; 149: 22–35.

    Article  CAS  Google Scholar 

  2. Vita M, Henriksson M . The Myc oncoprotein as a therapeutic target for human cancer. Semin Cancer Biol 2006; 16: 318–330.

    Article  CAS  Google Scholar 

  3. Soucek L, Whitfield JR, Sodir NM, Masso-Valles D, Serrano E, Karnezis AN et al. Inhibition of Myc family proteins eradicates KRas-driven lung cancer in mice. Genes Dev 2013; 27: 504–513.

    Article  CAS  Google Scholar 

  4. Meyer N, Penn LZ . Reflecting on 25 years with MYC. Nat Rev Cancer 2008; 8: 976–990.

    Article  CAS  Google Scholar 

  5. Blackwood EM, Eisenman RN . Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 1991; 251: 1211–1217.

    Article  CAS  Google Scholar 

  6. Ponzielli R, Katz S, Barsyte-Lovejoy D, Penn LZ . Cancer therapeutics: targeting the dark side of Myc. Eur J Cancer 2005; 41: 2485–2501.

    Article  CAS  Google Scholar 

  7. Soucek L, Whitfield J, Martins CP, Finch AJ, Murphy DJ, Sodir NM et al. Modelling Myc inhibition as a cancer therapy. Nature 2008; 455: 679–683.

    Article  CAS  Google Scholar 

  8. Soucek L, Nasi S, Evan GI . Omomyc expression in skin prevents Myc-induced papillomatosis. Cell Death Differ 2004; 11: 1038–1045.

    Article  CAS  Google Scholar 

  9. Jain M, Arvanitis C, Chu K, Dewey W, Leonhardt E, Trinh M et al. Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science 2002; 297: 102–104.

    Article  CAS  Google Scholar 

  10. Felsher DW . MYC inactivation elicits oncogene addiction through both tumor cell-intrinsic and host-dependent mechanisms. Genes Cancer 2010; 1: 597–604.

    Article  CAS  Google Scholar 

  11. Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 2011; 146: 904–917.

    Article  CAS  Google Scholar 

  12. Fu LL, Tian M, Li X, Li JJ, Huang J, Ouyang L et al. Inhibition of BET bromodomains as a therapeutic strategy for cancer drug discovery. Oncotarget 2015; 6: 5501–5516.

    PubMed  PubMed Central  Google Scholar 

  13. Picaud S, Da Costa D, Thanasopoulou A, Filippakopoulos P, Fish PV, Philpott M et al. PFI-1, a highly selective protein interaction inhibitor, targeting BET bromodomains. Cancer Res 2013; 73: 3336–3346.

    Article  CAS  Google Scholar 

  14. Posternak V, Cole MD . Strategically targeting MYC in cancer. F1000Res 2016; 5: 408.

    Article  Google Scholar 

  15. Rathert P, Roth M, Neumann T, Muerdter F, Roe JS, Muhar M et al. Transcriptional plasticity promotes primary and acquired resistance to BET inhibition. Nature 2015; 525: 543–547.

    Article  CAS  Google Scholar 

  16. Shi X, Mihaylova VT, Kuruvilla L, Chen F, Viviano S, Baldassarre M et al. Loss of TRIM33 causes resistance to BET bromodomain inhibitors through MYC- and TGF-beta-dependent mechanisms. Proc Natl Acad Sci USA 2016; 113: E4558–E4566.

    Article  CAS  Google Scholar 

  17. Fong CY, Gilan O, Lam EY, Rubin AF, Ftouni S, Tyler D et al. BET inhibitor resistance emerges from leukaemia stem cells. Nature 2015; 525: 538–542.

    Article  CAS  Google Scholar 

  18. Jung KY, Wang H, Teriete P, Yap JL, Chen L, Lanning ME et al. Perturbation of the c-Myc-Max protein-protein interaction via synthetic alpha-helix mimetics. J Med Chem 2015; 58: 3002–3024.

    Article  CAS  Google Scholar 

  19. Soodgupta D, Pan D, Cui G, Senpan A, Yang X, Lu L et al. Small molecule MYC inhibitor conjugated to integrin-targeted nanoparticles extends survival in a mouse model of disseminated multiple myeloma. Mol Cancer Ther 2015; 14: 1286–1294.

    Article  CAS  Google Scholar 

  20. Berg T . Small-molecule modulators of c-Myc/Max and Max/Max interactions. Curr Top Microbiol Immunol 2011; 348: 139–149.

    CAS  PubMed  Google Scholar 

  21. Follis AV, Hammoudeh DI, Daab AT, Metallo SJ . Small-molecule perturbation of competing interactions between c-Myc and Max. Bioorg Med Chem Lett 2009; 19: 807–810.

    Article  CAS  Google Scholar 

  22. Yin X, Giap C, Lazo JS, Prochownik EV . Low molecular weight inhibitors of Myc-Max interaction and function. Oncogene 2003; 22: 6151–6159.

    Article  CAS  Google Scholar 

  23. Beaulieu ME, McDuff FO, Frappier V, Montagne M, Naud JF, Lavigne P . New structural determinants for c-Myc specific heterodimerization with Max and development of a novel homodimeric c-Myc b-HLH-LZ. J Mol Recognit 2012; 25: 414–426.

    Article  CAS  Google Scholar 

  24. Montagne M, Beaudoin N, Fortin D, Lavoie CL, Klinck R, Lavigne P . The Max b-HLH-LZ can transduce into cells and inhibit c-Myc transcriptional activities. PLoS One 2012; 7: e32172.

    Article  CAS  Google Scholar 

  25. Soucek L, Helmer-Citterich M, Sacco A, Jucker R, Cesareni G, Nasi S . Design and properties of a Myc derivative that efficiently homodimerizes. Oncogene 1998; 17: 2463–2472.

    Article  CAS  Google Scholar 

  26. Soucek L, Jucker R, Panacchia L, Ricordy R, Tato F, Nasi S . Omomyc, a potential Myc dominant negative, enhances Myc-induced apoptosis. Cancer Res 2002; 62: 3507–3510.

    CAS  PubMed  Google Scholar 

  27. Xu J, Chen G, De Jong AT, Shahravan SH, Shin JA . Max-E47, a designed minimalist protein that targets the E-box DNA site in vivo and in vitro. J Am Chem Soc 2009; 131: 7839–7848.

    Article  CAS  Google Scholar 

  28. Ahmadpour F, Ghirlando R, De Jong AT, Gloyd M, Shin JA, Guarne A . Crystal structure of the minimalist Max-E47 protein chimera. PloS One 2012; 7: e32136.

    Article  CAS  Google Scholar 

  29. Callus BA, Ekert PG, Heraud JE, Jabbour AM, Kotevski A, Vince JE et al. Cytoplasmic p53 is not required for PUMA-induced apoptosis. Cell Death Differ 2008; 15: 213–215, author reply 215-216.

    Article  CAS  Google Scholar 

  30. Vince JE, Wong WW, Khan N, Feltham R, Chau D, Ahmed AU et al. IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 2007; 131: 682–693.

    Article  CAS  Google Scholar 

  31. Savino M, Annibali D, Carucci N, Favuzzi E, Cole MD, Evan GI et al. The action mechanism of the Myc inhibitor termed Omomyc may give clues on how to target Myc for cancer therapy. PloS ONE 2011; 6: e22284.

    Article  CAS  Google Scholar 

  32. Wasylishen AR, Kalkat M, Kim SS, Pandyra A, Chan PK, Oliveri S et al. MYC activity is negatively regulated by a C-terminal lysine cluster. Oncogene 2013; 33: 1066–1072.

    Article  Google Scholar 

  33. Wasylishen AR, Stojanova A, Oliveri S, Rust AC, Schimmer AD, Penn LZ . New model systems provide insights into Myc-induced transformation. Oncogene 2011; 30: 3727–3734.

    Article  CAS  Google Scholar 

  34. Mongiardi MP, Savino M, Bartoli L, Beji S, Nanni S, Scagnoli F et al. Myc and Omomyc functionally associate with the protein arginine methyltransferase 5 (PRMT5) in glioblastoma cells. Sci Rep 2015; 5: 15494.

    Article  Google Scholar 

  35. Wilson CH, Gamper I, Perfetto A, Auw J, Littlewood TD, Evan GI . The kinetics of ER fusion protein activation in vivo. Oncogene 2014; 33: 4877–4880.

    Article  CAS  Google Scholar 

  36. Ponzielli R, Boutros PC, Katz S, Stojanova A, Hanley AP, Khosravi F et al. Optimization of experimental design parameters for high-throughput chromatin immunoprecipitation studies. Nucleic Acids Res 2008; 36: e144.

    Article  Google Scholar 

  37. Wasylishen AR, Chan-Seng-Yue M, Bros C, Dingar D, Tu WB, Kalkat M et al. MYC phosphorylation at novel regulatory regions suppresses transforming activity. Cancer Res 2013; 73: 6504–6515.

    Article  CAS  Google Scholar 

  38. Lin CY, Loven J, Rahl PB, Paranal RM, Burge CB, Bradner JE et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell 2012; 151: 56–67.

    Article  CAS  Google Scholar 

  39. Sabo A, Kress TR, Pelizzola M, de Pretis S, Gorski MM, Tesi A et al. Selective transcriptional regulation by Myc in cellular growth control and lymphomagenesis. Nature 2014; 511: 488–492.

    Article  CAS  Google Scholar 

  40. Bhagwat AS, Vakoc CR . Targeting transcription factors in cancer. Trends Cancer 2015; 1: 53–65.

    Article  Google Scholar 

  41. Lee TI, Young RA . Transcriptional regulation and its misregulation in disease. Cell 2013; 152: 1237–1251.

    Article  CAS  Google Scholar 

  42. Kalkat M, Chan PK, Wasylishen AR, Srikumar T, Kim SS, Ponzielli R et al. Identification of c-MYC SUMOylation by mass spectrometry. PloS One 2014; 9: e115337.

    Article  Google Scholar 

  43. Oster SK, Mao DY, Kennedy J, Penn LZ . Functional analysis of the N-terminal domain of the Myc oncoprotein. Oncogene 2003; 22: 1998–2010.

    Article  CAS  Google Scholar 

  44. Stojanova A, Tu WB, Ponzielli R, Kotlyar M, Chan PK, Boutros PC et al. MYC interaction with the tumor suppressive SWI/SNF complex member INI1 regulates transcription and cellular transformation. Cell Cycle 2016; 15: 1–13.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Penn, Shin, and Chen labs for their helpful reviews and contributions to this manuscript. Special thanks to Dr Peter Mullen, Dr Sam Sathiamoorthy and Peter Tang. Funding was provided by way of Operating grant support from the Collaborative Health Research Program (JS, WC, LZP). Salary and stipend support from the Canadian Research Chairs Program (LZP), Natural Sciences and Engineering Research Council (LCL), Canadian Breast Cancer Foundation Ontario Region Doctoral Fellowship (WBT and MK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Z Penn.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lustig, L., Dingar, D., Tu, W. et al. Inhibiting MYC binding to the E-box DNA motif by ME47 decreases tumour xenograft growth. Oncogene 36, 6830–6837 (2017). https://doi.org/10.1038/onc.2017.275

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.275

This article is cited by

Search

Quick links