Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Lysine-52 stabilizes the MYC oncoprotein through an SCFFbxw7-independent mechanism

Abstract

The oncogenic transcription factor c-MYC (MYC) is deregulated and often overexpressed in more than 50% of cancers. MYC deregulation is associated with poor prognosis and aggressive disease, suggesting that the development of therapeutic inhibitors targeting MYC would markedly impact patient outcome. MYC is highly regulated, with a protein and mRNA half-life of ~30 min. The most extensively studied pathway regulating MYC protein stability involves ubiquitylation and proteasomal degradation mediated by the E3-ligase, SCFFbxw7. Here we provide evidence for an SCFFbxw7-independent regulatory mechanism centred on the highly conserved lysine-52 (K52) within MYC Box I. This residue has been shown to be post-translationally modified by both ubiquitylation and SUMOylation, hinting at the interplay of post-translational modifications at this site and the importance of this residue. We demonstrate that mutation of K52 to arginine (R) renders the MYC protein more labile. Mechanistically, we show that the degradation pathway regulated by K52 is independent of the Cullin-RING ligase family of E3-ligases, which includes not only the canonical SCFFbxw7 but also other known MYC-targeting E3-ligases, such as SCFSkp2, SCFβTCRP, SCFFbxo28 and DCXTRUSS. Taken together, our data identify a novel regulatory pathway centred on K52 that may be exploited for the development of anti-MYC therapeutics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Dang CV . MYC on the path to cancer. Cell 2012; 149: 22–35.

    Article  CAS  Google Scholar 

  2. Nesbit CE, Tersak JM, Prochownik EV . MYC oncogenes and human neoplastic disease. Oncogene 1999; 18: 3004–3016.

    Article  CAS  Google Scholar 

  3. Meyer N, Penn LZ . Reflecting on 25 years with MYC. Nat Rev Cancer 2008; 8: 976–990.

    Article  CAS  Google Scholar 

  4. Kalkat M, De Melo J, Hickman KA, Lourenco C, Redel C, Resetca D et al. MYC deregulation in primary human cancers. Genes (Basel) 2017; 8: 151.

    Article  Google Scholar 

  5. Dang CV, O’Donnell KA, Zeller KI, Nguyen T, Osthus RC, Li F . The c-Myc target gene network. Semin Cancer Biol 2006; 16: 253–264.

    Article  CAS  Google Scholar 

  6. Wolf E, Lin CY, Eilers M, Levens DL . Taming of the beast: shaping Myc-dependent amplification. Trends Cell Biol 2015; 25: 241–248.

    Article  CAS  Google Scholar 

  7. Lin CY, Lovén J, Rahl PB, Paranal RM, Burge CB, Bradner JE et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell 2012; 151: 56–67.

    Article  CAS  Google Scholar 

  8. Kress TR, Sabò A, Amati B . MYC: connecting selective transcriptional control to global RNA production. Nat Rev Cancer 2015; 15: 593–607.

    Article  CAS  Google Scholar 

  9. McKeown MR, Bradner JE . Therapeutic strategies to inhibit MYC. Cold Spring Harb Perspect Med 2014; 4: a014266.

    Article  Google Scholar 

  10. Gustafson WC, Weiss WA . Myc proteins as therapeutic targets. Oncogene 2010; 29: 1249–1259.

    Article  CAS  Google Scholar 

  11. Prochownik EV, Vogt PK . Therapeutic Targeting of Myc. Genes Cancer 2010; 1: 650–659.

    Article  CAS  Google Scholar 

  12. Fletcher S, Prochownik EV . Small-molecule inhibitors of the Myc oncoprotein. Biochim Biophys Acta 2015; 1849: 525–543.

    Article  CAS  Google Scholar 

  13. Delmore JE, Issa GC, Lemieux ME, Rahl PB, Shi J, Jacobs HM et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 2011; 146: 904–917.

    Article  CAS  Google Scholar 

  14. Zuber J, Shi J, Wang E, Rappaport AR, Herrmann H, Sison EA et al. RNAi screen identifies Brd4 as a therapeutic target in acute myeloid leukaemia. Nature 2011; 478: 524–528.

    Article  CAS  Google Scholar 

  15. Shu S, Lin CY, He HH, Witwicki RM, Tabassum DP, Roberts JM et al. Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer. Nature 2016; 529 (7586): 413–417 (advance on: 1–24).

    Article  CAS  Google Scholar 

  16. Tu WB, Helander S, Pilstål R, Hickman KA, Lourenco C, Jurisica I et al. Myc and its interactors take shape. Biochim Biophys Acta 2014; 1849: 469–483.

    Article  Google Scholar 

  17. Wasylishen AR, Kalkat M, Kim SS, Pandyra A, Chan P-K, Oliveri S et al. MYC activity is negatively regulated by a C-terminal lysine cluster. Oncogene 2014; 33: 1066–1072.

    Article  CAS  Google Scholar 

  18. Wasylishen AR, Chan-Seng-Yue M, Bros C, Dingar D, Tu WB, Kalkat M et al. MYC phosphorylation at novel regulatory regions suppresses transforming activity. Cancer Res 2013; 73: 6504–6515.

    Article  CAS  Google Scholar 

  19. Yeh E, Cunningham M, Arnold H, Chasse D, Monteith T, Ivaldi G et al. A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nat Cell Biol 2004; 6: 308–318.

    Article  CAS  Google Scholar 

  20. Grim JE, Gustafson MP, Hirata RK, Hagar AC, Swanger J, Welcker M et al. Isoform- and cell cycle-dependent substrate degradation by the Fbw7 ubiquitin ligase. J Cell Biol 2008; 181: 913–920.

    Article  CAS  Google Scholar 

  21. Welcker M, Orian A, Jin J, Grim JE, Grim JA, Harper JW et al. The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci USA 2004; 101: 9085–9090.

    Article  CAS  Google Scholar 

  22. Yada M, Hatakeyama S, Kamura T, Nishiyama M, Tsunematsu R, Imaki H et al. Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J 2004; 23: 2116–2125.

    Article  CAS  Google Scholar 

  23. Helander S, Montecchio M, Pilstål R, Su Y, Kuruvilla J, Elvén M et al. Pre-anchoring of Pin1 to unphosphorylated c-Myc in a fuzzy complex regulates c-Myc activity. Structure 2015; 23: 2267–2279.

    Article  CAS  Google Scholar 

  24. Popov N, Schülein C, Jaenicke LA, Eilers M . Ubiquitylation of the amino terminus of Myc by SCF(β-TrCP) antagonizes SCF(Fbw7)-mediated turnover. Nat Cell Biol 2010; 12: 973–981.

    Article  CAS  Google Scholar 

  25. Kim SY, Herbst A, Tworkowski KA, Salghetti SE, Tansey WP . Skp2 regulates Myc protein stability and activity. Mol Cell 2003; 11: 1177–1188.

    Article  CAS  Google Scholar 

  26. von der Lehr N, Johansson S, Wu S, Bahram F, Castell A, Cetinkaya C et al. The F-Box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol Cell 2003; 11: 1189–1200.

    Article  CAS  Google Scholar 

  27. Inoue S, Hao Z, Elia AJ, Cescon D, Zhou L, Silvester J et al. Mule/Huwe1/Arf-BP1 suppresses Ras-driven tumorigenesis by preventing c-Myc/Miz1-mediated down-regulation of p21 and p15. Genes Dev 2013; 27: 1101–1114.

    Article  CAS  Google Scholar 

  28. Zhao X, JI-T Heng, Guardavaccaro D, Jiang R, Pagano M, Guillemot F et al. The HECT-domain ubiquitin ligase Huwe1 controls neural differentiation and proliferation by destabilizing the N-Myc oncoprotein. Nat Cell Biol 2008; 10: 643–653.

    Article  CAS  Google Scholar 

  29. Adhikary S, Marinoni F, Hock A, Hulleman E, Popov N, Beier R et al. The ubiquitin ligase HectH9 regulates transcriptional activation by Myc and is essential for tumor cell proliferation. Cell 2005; 123: 409–421.

    Article  CAS  Google Scholar 

  30. Choi SH, Wright JB, Gerber SA, Cole MD . Myc protein is stabilized by suppression of a novel E3 ligase complex in cancer cells. Genes Dev 2010; 24: 1236–1241.

    Article  CAS  Google Scholar 

  31. Hakem A, Bohgaki M, Lemmers B, Tai E, Salmena L, Matysiak-Zablocki E et al. Role of Pirh2 in mediating the regulation of p53 and c-Myc. PLoS Genet 2011; 7: e1002360.

    Article  CAS  Google Scholar 

  32. Paul I, Ahmed SF, Bhowmik A, Deb S, Ghosh MK . The ubiquitin ligase CHIP regulates c-Myc stability and transcriptional activity. Oncogene 2013; 32: 1284–1295.

    Article  CAS  Google Scholar 

  33. Cepeda D, Ng H-F, Sharifi HR, Mahmoudi S, Cerrato VS, Fredlund E et al. CDK-mediated activation of the SCF(FBXO) (28) ubiquitin ligase promotes MYC-driven transcription and tumourigenesis and predicts poor survival in breast cancer. EMBO Mol Med 2013; 5: 999–1018.

    Article  CAS  Google Scholar 

  34. Chen Y, Zhou C, Ji W, Mei Z, Hu B, Zhang W et al. ELL targets c-Myc for proteasomal degradation and suppresses tumour growth. Nat Commun 2016; 7: 11057.

    Article  CAS  Google Scholar 

  35. Chakraborty AA, Scuoppo C, Dey S, Thomas LR, Lorey SL, Lowe SW et al. A common functional consequence of tumor-derived mutations within c-MYC. Oncogene 2014; 34: 1–4.

    Google Scholar 

  36. Pulverer BJ, Fisher C, Vousden K, Littlewood T, Evan G, Woodgett JR . Site-specific modulation of c-Myc cotransformation by residues phosphorylated in vivo. Oncogene 1994; 9: 59–70.

    CAS  PubMed  Google Scholar 

  37. Li LH, Nerlov C, Prendergast G, MacGregor D, Ziff EB . c-Myc represses transcription in vivo by a novel mechanism dependent on the initiator element and Myc box II. EMBO J 1994; 13: 4070–4079.

    Article  CAS  Google Scholar 

  38. Zhang Q, Spears E, Boone DN, Li Z, Gregory MA, Hann SR . Domain-specific c-Myc ubiquitylation controls c-Myc transcriptional and apoptotic activity. Proc Natl Acad Sci USA 2013; 110: 978–983.

    Article  CAS  Google Scholar 

  39. Kalkat M, Chan P-K, Wasylishen AR, Srikumar T, Kim SS, Ponzielli R et al. Identification of c-MYC SUMOylation by mass spectrometry. PLoS One 2014; 9: e115337.

    Article  Google Scholar 

  40. Oster SK, Mao DYL, Kennedy J, Penn LZ . Functional analysis of the N-terminal domain of the Myc oncoprotein. Oncogene 2003; 22: 1998–2010.

    Article  CAS  Google Scholar 

  41. Wasylishen AR, Stojanova A, Oliveri S, Rust AC, Schimmer AD, Penn LZ . New model systems provide insights into Myc-induced transformation. Oncogene 2011; 30: 3727–3734.

    Article  CAS  Google Scholar 

  42. Topham C, Tighe A, Ly P, Bennett A, Sloss O, Nelson L et al. MYC is a major determinant of mitotic cell fate. Cancer Cell 2015; 28: 129–140.

    Article  CAS  Google Scholar 

  43. Herbst A, Hemann MT, Tworkowski KA, Salghetti SE, Lowe SW, Tansey WP . A conserved element in Myc that negatively regulates its proapoptotic activity. EMBO Rep 2005; 6: 177–183.

    Article  CAS  Google Scholar 

  44. McMahon SB, Van Buskirk HA, Dugan KA, Copeland TD, Cole MD . The novel ATM-related protein TRRAP is an essential cofactor for the c- Myc and E2F oncoproteins. Cell 1998; 94: 363–374.

    Article  CAS  Google Scholar 

  45. Soucy TA, Smith PG, Milhollen MA, Berger AJ, Gavin JM, Adhikari S et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 2009; 458: 732–736.

    Article  CAS  Google Scholar 

  46. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F . Genome engineering using the CRISPR-Cas9 system. Nat Protoc 2013; 8: 2281–2308.

    Article  CAS  Google Scholar 

  47. Rajagopalan H, Jallepalli PV, Rago C, Velculescu VE, Kinzler KW, Vogelstein B et al. Inactivation of hCDC4 can cause chromosomal instability. Nature 2004; 428: 77–81.

    Article  CAS  Google Scholar 

  48. Diefenbacher ME, Chakraborty A, Blake SM, Mitter R, Popov N, Eilers M et al. Usp28 counteracts Fbw7 in intestinal homeostasis and cancer. Cancer Res 2015; 75: 1181–1186.

    Article  CAS  Google Scholar 

  49. Rabellino A, Melegari M, Tompkins VS, Chen W, Van Ness BG, Teruya-Feldstein J et al. PIAS1 promotes lymphomagenesis through MYC upregulation. Cell Rep 2016; 15: 2266–2278.

    Article  CAS  Google Scholar 

  50. González-Prieto R, Cuijpers S A. GG, Kumar R, Hendriks IA, Vertegaal ACOO . c-Myc is targeted to the proteasome for degradation in a SUMOylation-dependent manner, regulated by PIAS1, SENP7 and RNF4. Cell Cycle 2015; 14: 37–41.

    Article  Google Scholar 

  51. Kim W, Bennett EJ, Huttlin EL, Guo A, Li J, Possemato A et al. Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell 2011; 44: 325–340.

    Article  CAS  Google Scholar 

  52. Akhoondi S, Sun D, Von Der Lehr N, Apostolidou S, Klotz K, Maljukova A et al. FBXW7/hCDC4 is a general tumor suppressor in human cancer. Cancer Res 2007; 67: 9006–9012.

    Article  CAS  Google Scholar 

  53. Campeau E, Ruhl VE, Rodier F, Smith CL, Rahmberg BL, Fuss JO et al. A versatile viral system for expression and depletion of proteins in mammalian cells. PLoS ONE 2009; 4: e6529.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr Bert Vogelstein for the HCT116 cells (wt/Fbxw7−/−) and all members of the Penn lab and especially the technical support of Aaliya Tamachi and Natasha Vitkin. LZP holds the Tier 1 Canada Research Chair in Molecular Oncology. This work was also supported by the Canadian Institutes of Health Research (MOP275788).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Z Penn.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Melo, J., Kim, S., Lourenco, C. et al. Lysine-52 stabilizes the MYC oncoprotein through an SCFFbxw7-independent mechanism. Oncogene 36, 6815–6822 (2017). https://doi.org/10.1038/onc.2017.268

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.268

This article is cited by

Search

Quick links