Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Tumor suppressor Pdcd4 attenuates Sin1 translation to inhibit invasion in colon carcinoma

Abstract

Programmed cell death 4 (Pdcd4), a tumor invasion suppressor, is frequently downregulated in colorectal cancer and other cancers. In this study, we find that loss of Pdcd4 increases the activity of mammalian target of rapamycin complex 2 (mTORC2) and thereby upregulates Snail expression. Examining the components of mTORC2 showed that Pdcd4 knockdown increased the protein but not mRNA level of stress-activated-protein kinase interacting protein 1 (Sin1), which resulted from enhanced Sin1 translation. To understand how Pdcd4 regulates Sin1 translation, the SIN1 5′ untranslated region (5′UTR) was fused with luciferase reporter and named as 5′Sin1-Luc. Pdcd4 knockdown/knockout significantly increased the translation of 5′Sin1-Luc but not the control luciferase without the SIN1 5′UTR, suggesting that Sin1 5′UTR is necessary for Pdcd4 to inhibit Sin1 translation. Ectopic expression of wild-type Pdcd4 and Pdcd4(157–469), a deletion mutant that binds to translation initiation factor 4A (eIF4A), sufficiently inhibited Sin1 translation, and thus suppressed mTORC2 kinase activity and invasion in colon tumor cells. By contrast, Pdcd4(157–469)(D253A,D418A), a mutant that does not bind to eIF4A, failed to inhibit Sin1 translation, and consequently failed to repress mTORC2 activity and invasion. In addition, directly inhibiting eIF4A with silvestrol significantly suppressed Sin1 translation and attenuated invasion. These results indicate that Pdcd4-inhibited Sin1 translation is through suppressing eIF4A, and functionally important for suppression of mTORC2 activity and invasion. Moreover, in colorectal cancer tissues, the Sin1 protein but not mRNA was significantly upregulated while Pdcd4 protein was downregulated, suggesting that loss of Pdcd4 might correlate with Sin1 protein level but not mRNA level in colorectal cancer patients. Taken together, our work reveals a novel mechanism by which Pdcd4 inhibits Sin1 translation to attenuatemTORC2 activity and thereby suppresses invasion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Yang H-S, Wang Q, Bajer MM, Schmid T Pdcd4. In: Parsyan A (ed.). Translation and Its Regulation in Cancer Biology and Medicine. Springer, 2014, pp 135–161.

    Google Scholar 

  2. Wei ZT, Zhang X, Wang XY, Gao F, Zhou CJ, Zhu FL et al. PDCD4 inhibits the malignant phenotype of ovarian cancer cells. Cancer Sci 2009; 100: 1408–1413.

    Article  CAS  PubMed  Google Scholar 

  3. Guo X, Li W, Wang Q, Yang HS . AKT activation by Pdcd4 knockdown up-regulates cyclin D1 expression and promotes cell proliferation. Genes Cancer 2011; 2: 818–828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yang HS, Matthews CP, Clair T, Wang Q, Baker AR, Li CC et al. Tumorigenesis suppressor Pdcd4 down-regulates mitogen-activated protein kinase kinase kinase kinase 1 expression to suppress colon carcinoma cell invasion. Mol Cell Biol 2006; 26: 1297–1306.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Leupold JH, Yang HS, Colburn NH, Asangani I, Post S, Allgayer H . Tumor suppressor Pdcd4 inhibits invasion/intravasation and regulates urokinase receptor (u-PAR) gene expression via Sp-transcription factors. Oncogene 2007; 26: 4550–4562.

    Article  CAS  PubMed  Google Scholar 

  6. Nieves-Alicea R, Colburn NH, Simeone AM, Tari AM . Programmed cell death 4 inhibits breast cancer cell invasion by increasing tissue inhibitor of metalloproteinases-2 expression. Breast Cancer Res Treat 2009; 114: 203–209.

    Article  CAS  PubMed  Google Scholar 

  7. Wang Q, Sun ZX, Allgayer H, Yang HS . Downregulation of E-cadherin is an essential event in activating beta-catenin/Tcf-dependent transcription and expression of its target genes in Pdcd4 knockdown cells. Oncogene 2010; 29: 128–138.

    Article  PubMed  Google Scholar 

  8. Wang Q, Sun Z, Yang HS . Downregulation of tumor suppressor Pdcd4 promotes invasion and activates both beta-catenin/Tcf and AP-1-dependent transcription in colon carcinoma cells. Oncogene 2008; 27: 1527–1535.

    Article  CAS  PubMed  Google Scholar 

  9. Santhanam AN, Baker AR, Hegamyer G, Kirschmann DA, Colburn NH . Pdcd4 repression of lysyl oxidase inhibits hypoxia-induced breast cancer cell invasion. Oncogene 2010; 29: 3921–3932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang Q, Zhu J, Zhang Y, Sun Z, Guo X, Wang X et al. Down-regulation of programmed cell death 4 leads to epithelial to mesenchymal transition and promotes metastasis in mice. Eur J Cancer 2013; 49: 1761–1770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hilliard A, Hilliard B, Zheng SJ, Sun H, Miwa T, Song W et al. Translational regulation of autoimmune inflammation and lymphoma genesis by programmed cell death 4. J Immunol 2006; 177: 8095–8102.

    Article  CAS  PubMed  Google Scholar 

  12. Wang Q, Zhang Y, Yang HS . Pdcd4 knockdown up-regulates MAP4K1 expression and activation of AP-1 dependent transcription through c-Myc. Biochim Biophys Acta 2012; 1823: 1807–1814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chang JH, Cho YH, Sohn SY, Choi JM, Kim A, Kim YC et al. Crystal structure of the eIF4A-PDCD4 complex. Proc Natl Acad Sci USA 2009; 106: 3148–3153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Loh PG, Yang HS, Walsh MA, Wang Q, Wang X, Cheng Z et al. Structural basis for translational inhibition by the tumour suppressor Pdcd4. EMBO J 2009; 28: 274–285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang HS, Jansen AP, Komar AA, Zheng X, Merrick WC, Costes S et al. The transformation suppressor Pdcd4 is a novel eukaryotic translation initiation factor 4A binding protein that inhibits translation. Mol Cell Biol 2003; 23: 26–37.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rogers GW Jr., Komar AA, Merrick WC . eIF4A: the godfather of the DEAD box helicases. Prog Nucleic Acid Res Mol Biol 2002; 72: 307–331.

    Article  CAS  PubMed  Google Scholar 

  17. Wei N, Liu SS, Chan KK, Ngan HY . Tumour suppressive function and modulation of programmed cell death 4 (PDCD4) in ovarian cancer. PLoS One 2012; 7: e30311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lankat-Buttgereit B, Muller S, Schmidt H, Parhofer KG, Gress TM, Goke R . Knockdown of Pdcd4 results in induction of proprotein convertase 1/3 and potent secretion of chromogranin A and secretogranin II in a neuroendocrine cell line. Biol Cell 2008; 100: 703–715.

    Article  CAS  PubMed  Google Scholar 

  19. Vivanco I, Sawyers CL . The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2002; 2: 489–501.

    Article  CAS  PubMed  Google Scholar 

  20. Guertin DA, Sabatini DM . Defining the role of mTOR in cancer. Cancer Cell 2007; 12: 9–22.

    Article  CAS  PubMed  Google Scholar 

  21. Wullschleger S, Loewith R, Hall MN . TOR signaling in growth and metabolism. Cell 2006; 124: 471–484.

    Article  CAS  PubMed  Google Scholar 

  22. Gaubitz C, Prouteau M, Kusmider B, Loewith R . TORC2 structure and function. Trends Biochem Sci 2016; 41: 532–545.

    Article  CAS  PubMed  Google Scholar 

  23. Gulhati P, Bowen KA, Liu J, Stevens PD, Rychahou PG, Chen M et al. mTORC1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways. Cancer Res 2011; 71: 3246–3256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Roulin D, Cerantola Y, Dormond-Meuwly A, Demartines N, Dormond O . Targeting mTORC2 inhibits colon cancer cell proliferation in vitro and tumor formation in vivo. Mol Cancer 2010; 9: 57.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Masri J, Bernath A, Martin J, Jo OD, Vartanian R, Funk A et al. mTORC2 activity is elevated in gliomas and promotes growth and cell motility via overexpression of rictor. Cancer Res 2007; 67: 11712–11720.

    Article  CAS  PubMed  Google Scholar 

  26. Chen CH, Sarbassov, dos D . The mTOR (mammalian target of rapamycin) kinase maintains integrity of mTOR complex 2. J Biol Chem 2011; 286: 40386–40394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu P, Gan W, Inuzuka H, Lazorchak AS, Gao D, Arojo O et al. Sin1 phosphorylation impairs mTORC2 complex integrity and inhibits downstream Akt signalling to suppress tumorigenesis. Nat Cell Biol 2013; 15: 1340–1350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moraitis D, Karanikou M, Liakou C, Dimas K, Tzimas G, Tseleni-Balafouta S et al. SIN1, a critical component of the mTOR-Rictor complex, is overexpressed and associated with AKT activation in medullary and aggressive papillary thyroid carcinomas. Surgery 2014; 156: 1542–1548 discussion 1548–1549.

    Article  PubMed  Google Scholar 

  29. Xu J, Li X, Yang H, Chang R, Kong C, Yang L . SIN1 promotes invasion and metastasis of hepatocellular carcinoma by facilitating epithelial-mesenchymal transition. Cancer 2013; 119: 2247–2257.

    Article  CAS  PubMed  Google Scholar 

  30. Jansen AP, Camalier CE, Colburn NH . Epidermal expression of the translation inhibitor programmed cell death 4 suppresses tumorigenesis. Cancer Res 2005; 65: 6034–6041.

    Article  CAS  PubMed  Google Scholar 

  31. Franke TF . PI3K/Akt: getting it right matters. Oncogene 2008; 27: 6473–6488.

    Article  CAS  PubMed  Google Scholar 

  32. Svitkin YV, Pause A, Haghighat A, Pyronnet S, Witherell G, Belsham GJ et al. The requirement for eukaryotic initiation factor 4A (elF4A) in translation is in direct proportion to the degree of mRNA 5' secondary structure. RNA 2001; 7: 382–394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang HS, Cho MH, Zakowicz H, Hegamyer G, Sonenberg N, Colburn NH . A novel function of the MA-3 domains in transformation and translation suppressor Pdcd4 is essential for its binding to eukaryotic translation initiation factor 4A. Mol Cell Biol 2004; 24: 3894–3906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cencic R, Carrier M, Galicia-Vazquez G, Bordeleau ME, Sukarieh R, Bourdeau A et al. Antitumor activity and mechanism of action of the cyclopenta[b]benzofuran, silvestrol. PLoS One 2009; 4: e5223.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wolfe AL, Singh K, Zhong Y, Drewe P, Rajasekhar VK, Sanghvi VR et al. RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer. Nature 2014; 513: 65–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wiegering A, Uthe FW, Jamieson T, Ruoss Y, Huttenrauch M, Kuspert M et al. Targeting translation initiation bypasses signaling crosstalk mechanisms that maintain high MYC levels in colorectal cancer. Cancer Discov 2015; 5: 768–781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kogure T, Kinghorn AD, Yan I, Bolon B, Lucas DM, Grever MR et al. Therapeutic potential of the translation inhibitor silvestrol in hepatocellular cancer. PLoS One 2013; 8: e76136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liwak U, Thakor N, Jordan LE, Roy R, Lewis SM, Pardo OE et al. Tumor suppressor PDCD4 represses internal ribosome entry site-mediated translation of antiapoptotic proteins and is regulated by S6 kinase 2. Mol Cell Biol 2012; 32: 1818–1829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fehler O, Singh P, Haas A, Ulrich D, Muller JP, Ohnheiser J et al. An evolutionarily conserved interaction of tumor suppressor protein Pdcd4 with the poly(A)-binding protein contributes to translation suppression by Pdcd4. Nucleic Acids Res 2014; 42: 11107–11118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gulhati P, Cai Q, Li J, Liu J, Rychahou PG, Qiu S et al. Targeted inhibition of mammalian target of rapamycin signaling inhibits tumorigenesis of colorectal cancer. Clin Cancer Res 2009; 15: 7207–7216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Julien S, Puig I, Caretti E, Bonaventure J, Nelles L, van Roy F et al. Activation of NF-kappaB by Akt upregulates Snail expression and induces epithelium mesenchyme transition. Oncogene 2007; 26: 7445–7456.

    Article  CAS  PubMed  Google Scholar 

  42. Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M et al. Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol 2004; 6: 931–940.

    Article  CAS  PubMed  Google Scholar 

  43. Dorrello NV, Peschiaroli A, Guardavaccaro D, Colburn NH, Sherman NE, Pagano M . S6K1- and betaTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Science 2006; 314: 467–471.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Y, Wang Q, Chen L, Yang HS . Inhibition of p70S6K1 activation by Pdcd4 overcomes the resistance to an IGF-1R/IR inhibitor in colon carcinoma cells. Mol Cancer Ther 2015; 14: 799–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Glidden EJ, Gray LG, Vemuru S, Li D, Harris TE, Mayo MW . Multiple site acetylation of Rictor stimulates mammalian target of rapamycin complex 2 (mTORC2)-dependent phosphorylation of Akt protein. J Biol Chem 2012; 287: 581–588.

    Article  CAS  PubMed  Google Scholar 

  46. Liu P, Gan W, Chin YR, Ogura K, Guo J, Zhang J et al. PtdIns(3,4,5)P3-dependent activation of the mTORC2 kinase complex. Cancer Discov 2015; 5: 1194–1209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang G, Murashige DS, Humphrey SJ, James DE . A positive feedback loop between Akt and mTORC2 via SIN1 phosphorylation. Cell Rep 2015; 12: 937–943.

    Article  CAS  PubMed  Google Scholar 

  48. Strezoska Z, Pestov DG, Lau LF . Bop1 is a mouse WD40 repeat nucleolar protein involved in 28S and 5. 8S RRNA processing and 60S ribosome biogenesis. Mol Cell Biol 2000; 20: 5516–5528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ikenoue T, Hong S, Inoki K . Monitoring mammalian target of rapamycin (mTOR) activity. Methods Enzymol 2009; 452: 165–180.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH/NCI grant to H.-S. Yang (R01CA129015 and R03CA187839), NCI/NIH center core support grant to C. Wang (P30CA177558) and National Natural Science Foundation of China grant to J. Zhu (81402192). The Flow Cytometry facility is supported in part by NCI Center Core Support Grant (P30CA177558). We thank Dr Jian-Li Wang (Shandong University) for experimental supports and Ms Donna Gilbreath and Ms Catherine Anthony (Markey Cancer Center) for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J Zhu or H-S Yang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Zhu, J., Wang, YW. et al. Tumor suppressor Pdcd4 attenuates Sin1 translation to inhibit invasion in colon carcinoma. Oncogene 36, 6225–6234 (2017). https://doi.org/10.1038/onc.2017.228

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.228

This article is cited by

Search

Quick links