Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inhibition of the androgen receptor induces a novel tumor promoter, ZBTB46, for prostate cancer metastasis

Abstract

Current therapeutic regimens for prostate cancer focus on targeting androgen receptor (AR) signaling. However, the AR is a key factor in luminal epithelium differentiation and was shown to have a role as a tumor suppressor. Thus, its inhibition may activate oncogenic pathways that contribute to metastatic castration-resistant prostate cancer (CRPC). Herein, we report a novel tumor promoter, ZBTB46, which is negatively regulated by AR signaling via microRNA (miR)-1-mediated downregulation. ZBTB46 is associated with malignant prostate cancer and is essential for metastasis. Its overexpression can overcome the antitumor effects of miR-1 and promote androgen-independent proliferation. We demonstrated that ZBTB46 can transcriptionally regulate SNAI1, a key epithelial-to-mesenchymal transition (EMT) driver, which could contribute to induction of the EMT after androgen-deprivation therapy and metastasis. Our findings are supportive of the model that disruption of AR’s function may predispose prostate cancer to progress to metastatic CRPC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Richard J. Rebello, Christoph Oing, … Robert G. Bristow

References

  1. Crea F, Nur Saidy NR, Collins CC, Wang Y . The epigenetic/noncoding origin of tumor dormancy. Trends Mol Med 2015; 21: 206–211.

    Article  CAS  PubMed  Google Scholar 

  2. Eisenberger MA, Blumenstein BA, Crawford ED, Miller G, McLeod DG, Loehrer PJ et al. Bilateral orchiectomy with or without flutamide for metastatic prostate cancer. N Engl J Med 1998; 339: 1036–1042.

    Article  CAS  PubMed  Google Scholar 

  3. Feldman BJ, Feldman D . The development of androgen-independent prostate cancer. Nat Rev Cancer 2001; 1: 34–45.

    Article  CAS  PubMed  Google Scholar 

  4. Linja MJ, Savinainen KJ, Saramaki OR, Tammela TL, Vessella RL, Visakorpi T . Amplification and overexpression of androgen receptor gene in hormone-refractory prostate cancer. Cancer Res 2001; 61: 3550–3555.

    CAS  PubMed  Google Scholar 

  5. Schrader AJ, Boegemann M, Ohlmann CH, Schnoeller TJ, Krabbe LM, Hajili T et al. Enzalutamide in castration-resistant prostate cancer patients progressing after docetaxel and abiraterone. Eur Urol 2014; 65: 30–36.

    Article  CAS  PubMed  Google Scholar 

  6. Magi-Galluzzi C, Xu X, Hlatky L, Hahnfeldt P, Kaplan I, Hsiao P et al. Heterogeneity of androgen receptor content in advanced prostate cancer. Modern Pathol 1997; 10: 839–845.

    CAS  Google Scholar 

  7. Litvinov IV, De Marzo AM, Isaacs JT . Is the Achilles' heel for prostate cancer therapy a gain of function in androgen receptor signaling? J Clin Endocrinol Metab 2003; 88: 2972–2982.

    Article  CAS  PubMed  Google Scholar 

  8. Niu Y, Altuwaijri S, Lai KP, Wu CT, Ricke WA, Messing EM et al. Androgen receptor is a tumor suppressor and proliferator in prostate cancer. Proc Natl Acad Sci USA 2008; 105: 12182–12187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Izumi K, Fang LY, Mizokami A, Namiki M, Li L, Lin WJ et al. Targeting the androgen receptor with siRNA promotes prostate cancer metastasis through enhanced macrophage recruitment via CCL2/CCR2-induced STAT3 activation. EMBO Mol Med 2013; 5: 1383–1401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hsieh CL, Botta G, Gao S, Li T, Van Allen EM, Treacy DJ et al. PLZF, a tumor suppressor genetically lost in metastatic castration-resistant prostate cancer, is a mediator of resistance to androgen deprivation therapy. Cancer Res 2015; 75: 1944–1948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sun Y, Wang BE, Leong KG, Yue P, Li L, Jhunjhunwala S et al. Androgen deprivation causes epithelial-mesenchymal transition in the prostate: implications for androgen-deprivation therapy. Cancer Res 2012; 72: 527–536.

    Article  CAS  PubMed  Google Scholar 

  12. Jennbacken K, Tesan T, Wang W, Gustavsson H, Damber JE, Welen K . N-cadherin increases after androgen deprivation and is associated with metastasis in prostate cancer. Endocr Relat Cancer 2010; 17: 469–479.

    Article  CAS  PubMed  Google Scholar 

  13. Karantanos T, Corn PG, Thompson TC . Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate resistance and novel therapeutic approaches. Oncogene 2013; 32: 5501–5511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nicoloso MS, Spizzo R, Shimizu M, Rossi S, Calin GA . MicroRNAs—the micro steering wheel of tumour metastases. Nat Rev Cancer 2009; 9: 293–302.

    Article  CAS  PubMed  Google Scholar 

  15. Liu YN, Abou-Kheir W, Yin JJ, Fang L, Hynes P, Casey O et al. Critical and reciprocal regulation of KLF4 and SLUG in transforming growth factor beta-initiated prostate cancer epithelial-mesenchymal transition. Mol Cell Biol 2012; 32: 941–953.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liu YN, Yin JJ, Abou-Kheir W, Hynes PG, Casey OM, Fang L et al. MiR-1 and miR-200 inhibit EMT via Slug-dependent and tumorigenesis via Slug-independent mechanisms. Oncogene 2013; 32: 296–306.

    Article  CAS  PubMed  Google Scholar 

  17. Liu YN, Yin J, Barrett B, Sheppard-Tillman H, Li D, Casey OM et al. Loss of androgen-regulated microRNA 1 activates SRC and promotes prostate cancer bone metastasis. Mol Cell Biol 2015; 35: 1940–1951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Martens-Uzunova ES, Jalava SE, Dits NF, van Leenders GJ, Moller S, Trapman J et al. Diagnostic and prognostic signatures from the small non-coding RNA transcriptome in prostate cancer. Oncogene 2012; 31: 978–991.

    Article  CAS  PubMed  Google Scholar 

  19. Hudson RS, Yi M, Esposito D, Watkins SK, Hurwitz AA, Yfantis HG et al. MicroRNA-1 is a candidate tumor suppressor and prognostic marker in human prostate cancer. Nucleic Acids Res 2012; 40: 3689–3703.

    Article  CAS  PubMed  Google Scholar 

  20. Ambs S, Prueitt RL, Yi M, Hudson RS, Howe TM, Petrocca F et al. Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res 2008; 68: 6162–6170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee SU, Maeda T . POK/ZBTB proteins: an emerging family of proteins that regulate lymphoid development and function. Immunol Rev 2012; 247: 107–119.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cao J, Zhu S, Zhou W, Li J, Liu C, Xuan H et al. PLZF mediates the PTEN/AKT/FOXO3a signaling in suppression of prostate tumorigenesis. PLoS One 2013; 8: e77922.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Robinson D, Van Allen EM, Wu YM, Schultz N, Lonigro RJ, Mosquera JM et al. Integrative clinical genomics of advanced prostate cancer. Cell 2015; 161: 1215–1228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kudo-Saito C, Shirako H, Takeuchi T, Kawakami Y . Cancer metastasis is accelerated through immunosuppression during Snail-induced EMT of cancer cells. Cancer Cell 2009; 15: 195–206.

    Article  CAS  PubMed  Google Scholar 

  25. Siu MK, Chen WY, Tsai HY, Chen HY, Yin JJ, Chen CL et al. TCF7 is suppressed by the androgen receptor via microRNA-1-mediated downregulation and is involved in the development of resistance to androgen deprivation in prostate cancer. Prostate Cancer Prostatic Dis 2017; 20: 172–178.

    Article  CAS  PubMed  Google Scholar 

  26. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 2010; 18: 11–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Doane AS, Danso M, Lal P, Donaton M, Zhang L, Hudis C et al. An estrogen receptor-negative breast cancer subset characterized by a hormonally regulated transcriptional program and response to androgen. Oncogene 2006; 25: 3994–4008.

    Article  CAS  PubMed  Google Scholar 

  28. Satpathy AT, Kc W, Albring JC, Edelson BT, Kretzer NM, Bhattacharya D et al. Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages. J Exp Med 2012; 209: 1135–1152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ferraldeschi R, Welti J, Luo J, Attard G, de Bono JS . Targeting the androgen receptor pathway in castration-resistant prostate cancer: progresses and prospects. Oncogene 2015; 34: 1745–1757.

    Article  CAS  PubMed  Google Scholar 

  30. Yin JJ, Zhang L, Munasinghe J, Linnoila RI, Kelly K . Cediranib/AZD2171 inhibits bone and brain metastasis in a preclinical model of advanced prostate cancer. Cancer Res 2010; 70: 8662–8673.

    Article  CAS  PubMed  Google Scholar 

  31. Humphrey PA . Histological variants of prostatic carcinoma and their significance. Histopathology 2012; 60: 59–74.

    Article  PubMed  Google Scholar 

  32. Meredith MM, Liu K, Kamphorst AO, Idoyaga J, Yamane A, Guermonprez P et al. Zinc finger transcription factor zDC is a negative regulator required to prevent activation of classical dendritic cells in the steady state. J Exp Med 2012; 209: 1583–1593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gao J, Arnold JT, Isaacs JT . Conversion from a paracrine to an autocrine mechanism of androgen-stimulated growth during malignant transformation of prostatic epithelial cells. Cancer Res 2001; 61: 5038–5044.

    CAS  PubMed  Google Scholar 

  34. Boyd LK, Mao X, Lu YJ . The complexity of prostate cancer: genomic alterations and heterogeneity. Nat Rev Urol 2012; 9: 652–664.

    Article  PubMed  Google Scholar 

  35. Tomlins SA, Mehra R, Rhodes DR, Cao X, Wang L, Dhanasekaran SM et al. Integrative molecular concept modeling of prostate cancer progression. Nat Genet 2007; 39: 41–51.

    Article  CAS  PubMed  Google Scholar 

  36. Mendiratta P, Mostaghel E, Guinney J, Tewari AK, Porrello A, Barry WT et al. Genomic strategy for targeting therapy in castration-resistant prostate cancer. J Clin Oncol 2009; 27: 2022–2029.

    Article  CAS  PubMed  Google Scholar 

  37. Karatas OF, Guzel E, Suer I, Ekici ID, Caskurlu T, Creighton CJ et al. miR-1 and miR-133b are differentially expressed in patients with recurrent prostate cancer. PloS One 2014; 9: e98675.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Varkaris A, Corn PG, Gaur S, Dayyani F, Logothetis CJ, Gallick GE . The role of HGF/c-Met signaling in prostate cancer progression and c-Met inhibitors in clinical trials. Expert Opin Investig Drugs 2011; 20: 1677–1684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yan D, Dong Xda E, Chen X, Wang L, Lu C, Wang J et al. MicroRNA-1/206 targets c-Met and inhibits rhabdomyosarcoma development. J Biol Chem 2009; 284: 29596–29604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Han C, Zhou Y, An Q, Li F, Li D, Zhang X et al. MicroRNA-1 (miR-1) inhibits gastric cancer cell proliferation and migration by targeting MET. Tumour Biol 2015; 36: 6715–6723.

    Article  CAS  PubMed  Google Scholar 

  41. Gmyrek GA, Walburg M, Webb CP, Yu HM, You X, Vaughan ED et al. Normal and malignant prostate epithelial cells differ in their response to hepatocyte growth factor/scatter factor. Am J Pathol 2001; 159: 579–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Puisieux A, Brabletz T, Caramel J . Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol 2014; 16: 488–494.

    Article  CAS  PubMed  Google Scholar 

  43. De Craene B, Denecker G, Vermassen P, Taminau J, Mauch C, Derore A et al. Epidermal Snail expression drives skin cancer initiation and progression through enhanced cytoprotection, epidermal stem/progenitor cell expansion and enhanced metastatic potential. Cell Death Differ 2014; 21: 310–320.

    Article  CAS  PubMed  Google Scholar 

  44. Meredith MM, Liu K, Darrasse-Jeze G, Kamphorst AO, Schreiber HA, Guermonprez P et al. Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. J Exp Med 2012; 209: 1153–1165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shah RB, Mehra R, Chinnaiyan AM, Shen R, Ghosh D, Zhou M et al. Androgen-independent prostate cancer is a heterogeneous group of diseases: lessons from a rapid autopsy program. Cancer Res 2004; 64: 9209–9216.

    Article  CAS  PubMed  Google Scholar 

  46. Beltran H, Prandi D, Mosquera JM, Benelli M, Puca L, Cyrta J et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med 2016; 22: 298–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yin J, Pollock C, Tracy K, Chock M, Martin P, Oberst M et al. Activation of the RalGEF/Ral pathway promotes prostate cancer metastasis to bone. Mol Cell Biol 2007; 27: 7538–7550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yin J, Liu YN, Tillman H, Barrett B, Hewitt S, Ylaya K et al. AR-regulated TWEAK-FN14 pathway promotes prostate cancer bone metastasis. Cancer Res 2014; 74: 4306–4317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Siu MK, Abou-Kheir W, Yin JJ, Chang YS, Barrett B, Suau F et al. Loss of EGFR signaling regulated miR-203 promotes prostate cancer bone metastasis and tyrosine kinase inhibitors resistance. Oncotarget 2014; 5: 3770–3784.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was jointly supported by grants from the Ministry of Science and Technology of Taiwan (MOST104-2314-B-038-045-MY3) to YNL, (MOST105-2320-B-038-044) to WYC, (MOST104-2320-B-038-055-MY3) to YCT, by the National Health Research Institutes of Taiwan (NHRI-EX106-10308BC) to YNL, by Taipei Medical University (TMU104-AE1-B22) to WYC, and by the Health and Welfare Surcharge of Tobacco Products (MOHW106-TDU-B-212-144001) to YNL.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J Huang or Y-N Liu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, WY., Tsai, YC., Siu, M. et al. Inhibition of the androgen receptor induces a novel tumor promoter, ZBTB46, for prostate cancer metastasis. Oncogene 36, 6213–6224 (2017). https://doi.org/10.1038/onc.2017.226

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.226

This article is cited by

Search

Quick links