Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Piccolo mediates EGFR signaling and acts as a prognostic biomarker in esophageal squamous cell carcinoma

Abstract

The presynaptic cytomatrix protein Piccolo, encoded by PCLO, is frequently mutated and amplified in esophageal squamous cell carcinoma (ESCC), but its exact roles in ESCC remain unclear. Here we report that Piccolo expression correlates significantly with clinical stage, patient survival and tumor embolus. Functional studies demonstrate that PCLO knockdown remarkably attenuates ESCC malignancy in vitro and in vivo, and ectopic EGFR expression partially compensates for Piccolo loss. PCLO knockdown promotes ubiquitination and degradation of EGFR, which is associated with the negative regulatory effect of Piccolo on E3 ligase Siah1. An anti-Piccolo monoclonal antibody inhibited tumor proliferation in a mouse model of ESCC. These results demonstrate that Piccolo contributes to tumor aggressiveness in ESCC, likely by stabilizing EGFR and promoting EGFR-dependent signaling. Our results further suggest that Piccolo may represent a novel prognostic biomarker and therapeutic target for patients with ESCC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Song Y, Li L, Ou Y, Gao Z, Li E, Li X et al. Identification of genomic alterations in oesophageal squamous cell cancer. Nature 2014; 509: 91–95.

    Article  CAS  Google Scholar 

  2. Lin DC, Hao JJ, Nagata Y, Xu L, Shang L, Meng X et al. Genomic and molecular characterization of esophageal squamous cell carcinoma. Nat Genet 2014; 46: 467–473.

    Article  CAS  Google Scholar 

  3. Zhang Y, Qiu Z, Wei L, Tang R, Lian B, Zhao Y et al. Integrated analysis of mutation data from various sources identifies key genes and signaling pathways in hepatocellular carcinoma. PLoS One 2014; 9: e100854.

    Article  Google Scholar 

  4. Fujimoto A, Furuta M, Shiraishi Y, Gotoh K, Kawakami Y, Arihiro K et al. Whole-genome mutational landscape of liver cancers displaying biliary phenotype reveals hepatitis impact and molecular diversity. Nat Commun 2015; 6: 6120.

    Article  CAS  Google Scholar 

  5. Lohr JG, Stojanov P, Lawrence MS, Auclair D, Chapuy B, Sougnez C et al. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc Natl Acad Sci USA 2012; 109: 3879–3884.

    Article  CAS  Google Scholar 

  6. Zhai RG, Vardinon-Friedman H, Cases-Langhoff C, Becker B, Gundelfinger ED, Ziv NE et al. Assembling the presynaptic active zone: a characterization of an active one precursor vesicle. Neuron 2001; 29: 131–143.

    Article  CAS  Google Scholar 

  7. Fenster SD, Kessels MM, Qualmann B, Chung WJ, Nash J, Gundelfinger ED et al. Interactions between Piccolo and the actin/dynamin-binding protein Abp1 link vesicle endocytosis to presynaptic active zones. J Biol Chem 2003; 278: 20268–20277.

    Article  CAS  Google Scholar 

  8. Limbach C, Laue MM, Wang X, Hu B, Thiede N, Hultqvist G et al. Molecular in situ topology of Aczonin/Piccolo and associated proteins at the mammalian neurotransmitter release site. Proc Natl Acad Sci USA 2011; 108: E392–E401.

    Article  CAS  Google Scholar 

  9. Takao-Rikitsu E, Mochida S, Inoue E, Deguchi-Tawarada M, Inoue M, Ohtsuka T et al. Physical and functional interaction of the active zone proteins, CAST, RIM1, and Bassoon, in neurotransmitter release. J Cell Biol 2004; 164: 301–311.

    Article  CAS  Google Scholar 

  10. Fenster SD, Chung WJ, Zhai R, Cases-Langhoff C, Voss B, Garner AM et al. Piccolo, a presynaptic zinc finger protein structurally related to bassoon. Neuron 2000; 25: 203–214.

    Article  CAS  Google Scholar 

  11. Wang X, Kibschull M, Laue MM, Lichte B, Petrasch-Parwez E, Kilimann MW . Aczonin, a 550-kD putative scaffolding protein of presynaptic active zones, shares homology regions with Rim and Bassoon and binds profilin. J Cell Biol 1999; 147: 151–162.

    Article  CAS  Google Scholar 

  12. Garner CC, Nash J, Huganir RL . PDZ domains in synapse assembly and signalling. Trends Cell Biol 2000; 10: 274–280.

    Article  CAS  Google Scholar 

  13. Garcia J, Gerber SH, Sugita S, Sudhof TC, Rizo J . A conformational switch in the Piccolo C2A domain regulated by alternative splicing. Nat Struct Mol Biol 2004; 11: 45–53.

    Article  CAS  Google Scholar 

  14. Gerber SH, Garcia J, Rizo J, Sudhof TC . An unusual C(2)-domain in the active-zone protein piccolo: implications for Ca(2+) regulation of neurotransmitter release. EMBO J 2001; 20: 1605–1619.

    Article  CAS  Google Scholar 

  15. Cremona O, De Camilli P . Phosphoinositides in membrane traffic at the synapse. J Cell Sci 2001; 114: 1041–1052.

    CAS  PubMed  Google Scholar 

  16. Andl CD, Mizushima T, Nakagawa H, Oyama K, Harada H, Chruma K et al. Epidermal growth factor receptor mediates increased cell proliferation, migration, and aggregation in esophageal keratinocytes in vitro and in vivo. J Biol Chem 2003; 278: 1824–1830.

    Article  CAS  Google Scholar 

  17. Abedi-Ardekani B, Dar NA, Mir MM, Zargar SA, Lone MM, Martel-Planche G et al. Epidermal growth factor receptor (EGFR) mutations and expression in squamous cell carcinoma of the esophagus in central Asia. BMC Cancer 2012; 12: 602.

    Article  CAS  Google Scholar 

  18. Cao HH, Zheng CP, Wang SH, Wu JY, Shen JH, Xu XE et al. A molecular prognostic model predicts esophageal squamous cell carcinoma prognosis. PLoS One 2014; 9: e106007.

    Article  Google Scholar 

  19. Hanawa M, Suzuki S, Dobashi Y, Yamane T, Kono K, Enomoto N et al. EGFR protein overexpression and gene amplification in squamous cell carcinomas of the esophagus. Int J Cancer 2006; 118: 1173–1180.

    Article  CAS  Google Scholar 

  20. Kalabis J, Wong GS, Vega ME, Natsuizaka M, Robertson ES, Herlyn M et al. Isolation and characterization of mouse and human esophageal epithelial cells in 3D organotypic culture. Nat Protoc 2012; 7: 235–246.

    Article  CAS  Google Scholar 

  21. Lehman HL, Yang X, Welsh PA, Stairs DB . p120-catenin down-regulation and epidermal growth factor receptor overexpression results in a transformed epithelium that mimics esophageal squamous cell carcinoma. Am J Pathol 2015; 185: 240–251.

    Article  CAS  Google Scholar 

  22. Navarini D, Gurski RR, Madalosso CA, Aita L, Meurer L, Fornari F . Epidermal growth factor receptor expression in esophageal adenocarcinoma: relationship with tumor stage and survival after esophagectomy. Gastroenterol Res Pract 2012; 2012: 941954.

    Article  Google Scholar 

  23. Shang L, Liu HJ, Hao JJ, Jiang YY, Shi F, Zhang Y et al. A panel of overexpressed proteins for prognosis in esophageal squamous cell carcinoma. PLoS One 2014; 9: e111045.

    Article  Google Scholar 

  24. Yang YL, Xu KL, Zhou Y, Gao X, Chen LR . Correlation of epidermal growth factor receptor overexpression with increased epidermal growth factor receptor gene copy number in esophageal squamous cell carcinomas. Chin Med J 2012; 125: 450–454.

    PubMed  Google Scholar 

  25. Gao Z, Meng X, Mu D, Sun X, Yu J . Prognostic significance of epidermal growth factor receptor in locally advanced esophageal squamous cell carcinoma for patients receiving chemoradiotherapy. Oncol Lett 2014; 7: 1118–1122.

    Article  CAS  Google Scholar 

  26. Wang Q, Zhu H, Xiao Z, Zhang W, Liu X, Zhang X et al. Expression of epidermal growth factor receptor is an independent prognostic factor for esophageal squamous cell carcinoma. World J Surg Oncol 2013; 11: 278.

    Article  Google Scholar 

  27. Sunpaweravong P, Sunpaweravong S, Puttawibul P, Mitarnun W, Zeng C, Baron AE et al. Epidermal growth factor receptor and cyclin D1 are independently amplified and overexpressed in esophageal squamous cell carcinoma. J Cancer Res Clin Oncol 2005; 131: 111–119.

    Article  CAS  Google Scholar 

  28. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P et al. A method and server for predicting damaging missense mutations. Nat Methods 2010; 7: 248–249.

    Article  CAS  Google Scholar 

  29. Ng PC, Henikoff S . SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res 2003; 31: 3812–3814.

    Article  CAS  Google Scholar 

  30. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2012; 2: 401–404.

    Article  Google Scholar 

  31. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 2013; 6: pl1.

  32. Sorkin A, Waters CM . Endocytosis of growth factor receptors. Bioessays 1993; 15: 375–382.

    Article  CAS  Google Scholar 

  33. Xue L, Ren L, Zou S, Shan L, Liu X, Xie Y et al. Parameters predicting lymph node metastasis in patients with superficial esophageal squamous cell carcinoma. Mod Pathol 2012; 25: 1364–1377.

    Article  CAS  Google Scholar 

  34. Waites CL, Leal-Ortiz SA, Okerlund N, Dalke H, Fejtova A, Altrock WD et al. Bassoon and Piccolo maintain synapse integrity by regulating protein ubiquitination and degradation. EMBO J 2013; 32: 954–969.

    Article  CAS  Google Scholar 

  35. Sander JD, Joung JK . CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 2014; 32: 347–355.

    Article  CAS  Google Scholar 

  36. Arteaga CL, Engelman JA . ERBB receptors: from oncogene discovery to basic science to mechanism-based cancer therapeutics. Cancer Cell 2014; 25: 282–303.

    Article  CAS  Google Scholar 

  37. Zhang H, Jin Y, Chen X, Jin C, Law S, Tsao SW et al. Cytogenetic aberrations in immortalization of esophageal epithelial cells. Cancer Genet Cytogenet 2006; 165: 25–35.

    Article  CAS  Google Scholar 

  38. Shen ZY, Xu LY, Li EM, Cai WJ, Chen MH, Shen J et al. Telomere and telomerase in the initial stage of immortalization of esophageal epithelial cell. World J Gastroenterol 2002; 8: 357–362.

    Article  CAS  Google Scholar 

  39. Yang F, Zhang W, Li D, Zhan Q . Gadd45a suppresses tumor angiogenesis via inhibition of the mTOR/STAT3 protein pathway. J Biol Chem 2013; 288: 6552–6560.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciated Jie Chen and Tian Lan for revising this manuscript and offering constructive advices. This work is supported by the National 973 Program (2015CB553904) and National Natural Fund of China (81230047 and 81321091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q Zhan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Hong, R., Xue, L. et al. Piccolo mediates EGFR signaling and acts as a prognostic biomarker in esophageal squamous cell carcinoma. Oncogene 36, 3890–3902 (2017). https://doi.org/10.1038/onc.2017.15

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.15

This article is cited by

Search

Quick links