Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

EMP2 is a novel therapeutic target for endometrial cancer stem cells

Abstract

Previous studies have suggested that overexpression of the oncogenic protein epithelial membrane protein-2 (EMP2) correlates with endometrial carcinoma progression and ultimately poor survival from disease. To understand the role of EMP2 in the etiology of disease, gene analysis was performed to show transcripts that are reciprocally regulated by EMP2 levels. In particular, EMP2 expression correlates with and helps regulate the expression of several cancer stem cell associated markers including aldehyde dehydrogenase 1 (ALDH1). ALDH expression significantly promotes tumor initiation and correlates with the levels of EMP2 expression in both patient samples and tumor cell lines. As therapy against cancer stem cells in endometrial cancer is lacking, the ability of anti-EMP2 IgG1 therapy to reduce primary and secondary tumor formation using xenograft HEC1A models was determined. Anti-EMP2 IgG1 reduced the expression and activity of ALDH and correspondingly reduced both primary and secondary tumor load. Our results collectively suggest that anti-EMP2 therapy may be a novel method of reducing endometrial cancer stem cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

Abbreviations

EMP2:

Epithelial membrane protein-2

CSC:

cancer stem cells.

References

  1. Dossus L, Allen N, Kaaks R, Bakken K, Lund E, Tjonneland A et al. Reproductive risk factors and endometrial cancer: the European Prospective Investigation into Cancer and Nutrition. Int J Cancer 127: 442–451.

  2. Whitcomb BP . Gynecologic malignancies. Surg Clin North Am 2008; 88: 301–317 vi.

    Article  Google Scholar 

  3. Siegel R, Naishadham D, Jemal A . Cancer statistics. CA Cancer J Clin 2012; 62: 10–29.

    Article  Google Scholar 

  4. Salvesen HB, Haldorsen IS, Trovik J . Markers for individualised therapy in endometrial carcinoma. Lancet Oncol 2012; 13: e353–e361.

    Article  Google Scholar 

  5. Boman BM, Wicha MS . Cancer stem cells: a step toward the cure. J Clin Oncol 2008; 26: 2795–2799.

    Article  Google Scholar 

  6. Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730–737.

    Article  CAS  Google Scholar 

  7. Glinsky GV . Stem cell origin of death-from-cancer phenotypes of human prostate and breast cancers. Stem Cell Rev 2007; 3: 79–93.

    Article  CAS  Google Scholar 

  8. Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 2006; 442: 818–822.

    Article  CAS  Google Scholar 

  9. Wicha MS, Liu S, Dontu G . Cancer stem cells: an old idea—a paradigm shift. Cancer Res 2006; 66: 1883–1890.

    Article  CAS  Google Scholar 

  10. Soltysova A, Altanerova V, Altaner C . Cancer stem cells. Neoplasma 2005; 52: 435–440.

    CAS  PubMed  Google Scholar 

  11. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 2009; 458: 780–783.

    Article  CAS  Google Scholar 

  12. Eyler CE, Rich JN . Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol 2008; 26: 2839–2845.

    Article  CAS  Google Scholar 

  13. Levina V, Marrangoni AM, DeMarco R, Gorelik E, Lokshin AE . Drug-selected human lung cancer stem cells: cytokine network, tumorigenic and metastatic properties. PLoS One 2008; 3: e3077.

    Article  Google Scholar 

  14. Hubbard SA, Friel AM, Kumar B, Zhang L, Rueda BR, Gargett CE . Evidence for cancer stem cells in human endometrial carcinoma. Cancer Res 2009; 69: 8241–8248.

    Article  CAS  Google Scholar 

  15. Kyo S . Endometrial cancer stem cells: are they a possible therapeutic target? Curr Obstet Gynecol Rep 2013; 2: 1–10.

    Article  Google Scholar 

  16. Gordon LK, Kiyohara M, Fu M, Braun J, Dhawan P, Chan A et al. EMP2 regulates angiogenesis in endometrial cancer cells through induction of VEGF. Oncogene 2013; 32: 5369–5376.

    Article  CAS  Google Scholar 

  17. Fu M, Rao R, Sudhakar D, Hogue CP, Rutta Z, Morales S et al. Epithelial membrane protein-2 promotes endometrial tumor formation through activation of FAK and Src. PLoS One 2011; 6: e19945.

    Article  CAS  Google Scholar 

  18. Liang D, Ma Y, Liu J, Trope C, Holm R, Nesland J et al. The hypoxic microenvironment upgrades stem-like properties of ovarian cancer cells. BMC Cancer 2012; 12: 201.

    Article  CAS  Google Scholar 

  19. Wicha MS, Liu S, Dontu G . Cancer stem cells: an old idea—a paradigm shift. Cancer Res 2006; 66: 1883–1890.

    Article  CAS  Google Scholar 

  20. Wadehra M, Natarajan S, Seligson DB, Williams CJ, Hummer AJ, Hedvat C et al. Expression of epithelial membrane protein-2 is associated with endometrial adenocarcinoma of unfavorable outcome. Cancer 2006; 107: 90–98.

    Article  CAS  Google Scholar 

  21. Habeeb O, Goodglick L, Soslow RA, Rao RG, Gordon LK, Schirripa O et al. Epithelial membrane protein-2 expression is an early predictor of endometrial cancer development. Cancer 2010; 116: 4718–4726.

    Article  Google Scholar 

  22. Mamat S, Ikeda J-i, Tian T, Wang Y, Luo W, Aozasa K et al. Transcriptional regulation of aldehyde dehydrogenase 1A1 gene by alternative spliced forms of nuclear factor Y in tumorigenic population of endometrial adenocarcinoma. Genes Cancer 2011; 2: 979–984.

    Article  CAS  Google Scholar 

  23. Ginestier C, Wicinski J, Cervera N, Monville F, Finetti P, Bertucci F et al. Retinoid signaling regulates breast cancer stem cell differentiation. Cell Cycle 2009; 8: 3297.

    Article  CAS  Google Scholar 

  24. Rutella S, Bonanno G, Procoli A, Mariotti A, Corallo M, Prisco MG et al. Cells with characteristics of cancer stem/progenitor cells express the CD133 antigen in human endometrial tumors. Clin Cancer Res 2009; 15: 4299–4311.

    Article  CAS  Google Scholar 

  25. Györffy B, Surowiak P, Kiesslich O, Denkert C, Schäfer R, Dietel M et al. Gene expression profiling of 30 cancer cell lines predicts resistance towards 11 anticancer drugs at clinically achieved concentrations. Int J Cancer 2006; 118: 1699–1712.

    Article  Google Scholar 

  26. Dedes KJ, Wetterskog D, Ashworth A, Kaye SB, Reis-Filho JS . Emerging therapeutic targets in endometrial cancer. Nat Rev Clin Oncol 2011; 8: 261–271.

    Article  CAS  Google Scholar 

  27. Leblanc M, Poncelet C, Soriano D, Walker-Combrouze F, Madelenat P, Scoazec J et al. Alteration of CD44 and cadherins expression: possible association with augmented aggressiveness and invasiveness of endometrial carcinoma. Virchows Archiv 2001; 438: 78–85.

    Article  CAS  Google Scholar 

  28. Ayhan A, Tok EC, Bildirici I, Ayhan A . Overexpression of CD44 variant 6 in human endometrial cancer and its prognostic significance. Gynecol Oncol 2001; 80: 355–358.

    Article  CAS  Google Scholar 

  29. Xing F, Okuda H, Watabe M, Kobayashi A, Pai SK, Liu W et al. Hypoxia-induced Jagged2 promotes breast cancer metastasis and self-renewal of cancer stem-like cells. Oncogene 2011; 30: 4075–4086.

    Article  CAS  Google Scholar 

  30. Samanta D, Gilkes DM, Chaturvedi P, Xiang L, Semenza GL . Hypoxia-inducible factors are required for chemotherapy resistance of breast cancer stem cells. Proc Natl Acad Sci USA 2014; 111: E5429–E5438.

    Article  CAS  Google Scholar 

  31. Kim R-J, Park J-R, Roh K-J, Choi AR, Kim S-R, Kim P-H et al. High aldehyde dehydrogenase activity enhances stem cell features in breast cancer cells by activating hypoxia-inducible factor-2α. Cancer Lett 2013; 333: 18–31.

    Article  CAS  Google Scholar 

  32. Wadehra M, Dayal M, Mainigi M, Ord T, Iyer R, Braun J et al. Knockdown of the tetraspan protein epithelial membrane protein-2 inhibits implantation in the mouse. Dev Biol 2006; 292: 430–441.

    Article  CAS  Google Scholar 

  33. Ye J, Wu D, Wu P, Chen Z, Huang J . The cancer stem cell niche: cross talk between cancer stem cells and their microenvironment. Tumor Biol 2014; 35: 3945–3951.

    Article  CAS  Google Scholar 

  34. Plaks V, Kong N, Werb Z . The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 2015; 16: 225–238.

    Article  CAS  Google Scholar 

  35. Ginestier C, Hur M, Charafe-Jauffret E, Monville F, Dutcher J, Brown M . ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 2007; 1: 555–567.

    Article  CAS  Google Scholar 

  36. Charafe-Jauffret E, Ginestier C, Iovino F, Tarpin C, Diebel M, Esterni B et al. Aldehyde dehydrogenase 1–positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin Cancer Res 2010; 16: 45–55.

    Article  CAS  Google Scholar 

  37. Tanei T, Morimoto K, Shimazu K, Kim SJ, Tanji Y, Taguchi T et al. Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential Paclitaxel and Epirubicin-based chemotherapy for breast cancers. Clin Cancer Res 2009; 15: 4234–4241.

    Article  CAS  Google Scholar 

  38. Daoud SA, Hosni HN, Hareedy AA . Immunohistochemical expressions of ER, PR and ALDH1 in endometrial hyperplasia and carcinoma. J Am Sci 2013; 9: 900–905.

    Google Scholar 

  39. Rahadiani N, Ikeda J-i, Mamat S, Matsuzaki S, Ueda Y, Umehara R et al. Expression of aldehyde dehydrogenase 1 (ALDH1) in endometrioid adenocarcinoma and its clinical implications. Cancer Sci 2011; 102: 903–908.

    Article  CAS  Google Scholar 

  40. Luo M, Fan H, Nagy T, Wei H, Wang C, Liu S et al. Mammary epithelial-specific ablation of the focal adhesion kinase suppresses mammary tumorigenesis by affecting mammary cancer stem/progenitor cells. Cancer Res 2009; 69: 466–474.

    Article  CAS  Google Scholar 

  41. Franovic A, Holterman CE, Payette J, Lee S . Human cancers converge at the HIF-2α oncogenic axis. Proc Natl Acad Sci USA 2009; 106: 21306–21311.

    Article  CAS  Google Scholar 

  42. Mendez O, Zavadil J, Esencay M, Lukyanov Y, Santovasi D, Wang S-C et al. Knock down of HIF-1alpha in glioma cells reduces migration in vitro and invasion in vivo and impairs their ability to form tumor spheres. Mol Cancer 2010; 9: 133.

    Article  Google Scholar 

  43. Croker A, Allan A . Inhibition of aldehyde dehydrogenase (ALDH) activity reduces chemotherapy and radiation resistance of stem-like ALDHhiCD44+ human breast cancer cells. Breast Cancer Res Treat 2012; 133: 75–87.

    Article  CAS  Google Scholar 

  44. Charafe-Jauffret E, Ginestier C, Birnbaum D . Breast cancer stem cells: tools and models to rely on. BMC Cancer 2009; 9: 202.

    Article  Google Scholar 

  45. Lu H, Clauser KR, Tam WL, Fröse J, Ye X, Eaton EN et al. A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol 2014; 16: 1105–1117.

    Article  CAS  Google Scholar 

  46. Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1: 313–323.

    Article  CAS  Google Scholar 

  47. O'Brien CA, Kreso A, Jamieson CHM . Cancer stem cells and self-renewal. Clin Cancer Res 2010; 16: 3113–3120.

    Article  CAS  Google Scholar 

  48. Hu Y, Smyth GK . ELDA: Extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J Immunol Methods 2009; 347: 70–78.

    Article  CAS  Google Scholar 

  49. Mirantes C, Espinosa I, Ferrer I, Dolcet X, Prat J, Matias-Guiu X . Epithelial-to-mesenchymal transition and stem cells in endometrial cancer. Hum Pathol 2013; 44: 1973–1981.

    Article  CAS  Google Scholar 

  50. Wu Y, Wu PY . CD133 as a marker for cancer stem cells: progresses and concerns. Stem Cells Dev 2009; 18: 1127–1134.

    Article  CAS  Google Scholar 

  51. Kreso A, Dick John E . Evolution of the cancer stem cell model. Cell Stem Cell 2014; 14: 275–291.

    Article  CAS  Google Scholar 

  52. Marcato P, Dean CA, Pan D, Araslanova R, Gillis M, Joshi M et al. Aldehyde dehydrogenase activity of breast cancer stem cells is primarily due to isoform ALDH1A3 and its expression is predictive of metastasis. Stem Cells 2011; 29: 32–45.

    Article  CAS  Google Scholar 

  53. Korkaya H, Paulson A, Iovino F, Wicha MS . HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene 2008; 27: 6120–6130.

    Article  CAS  Google Scholar 

  54. Conley SJ, Gheordunescu E, Kakarala P, Newman B, Korkaya H, Heath AN et al. Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia. Proc Natl Acad Sci USA 2012; 109: 2784–2789.

    Article  CAS  Google Scholar 

  55. Alam M, Ahmad R, Rajabi H, Kharbanda A, Kufe D . MUC1-C oncoprotein activates ERK→C/EBPβ signaling and induction of aldehyde dehydrogenase 1A1 in breast cancer cells. J Biol Chem 2013; 288: 30892–30903.

    Article  CAS  Google Scholar 

  56. Kurebayashi J, Kanomata N, Moriya T, Kozuka Y, Watanabe M, Sonoo H . Preferential antitumor effect of the Src inhibitor dasatinib associated with a decreased proportion of aldehyde dehydrogenase 1-positive cells in breast cancer cells of the basal B subtype. BMC Cancer 2010; 10: 568–568.

    Article  Google Scholar 

  57. Shapiro IM, Kolev VN, Vidal CM, Kadariya Y, Ring JE, Wright Q et al. Merlin deficiency predicts for FAK inhibitor sensitivity: a synthetic lethal relationship. Sci Transl Med 2014; 6: 237ra268–237ra268.

    Google Scholar 

  58. Alonso-Alconada L, Muinelo-Romay L, Madissoo K, Diaz-Lopez A, Krakstad C, Trovik J et al. Molecular profiling of circulating tumor cells links plasticity to the metastatic process in endometrial cancer. Mol Cancer 2014; 13: 223.

    Article  Google Scholar 

  59. Nandy SB, Subramani R, Rajamanickam V, Lopez-Valdez R, Arumugam A, Boopalan T et al. microRNA alterations in ALDH positive mammary epithelial cells: a crucial contributing factor towards breast cancer risk reduction in case of early pregnancy. BMC Cancer 2014; 14: 644.

    Article  Google Scholar 

  60. Wadehra M, Dayal M, Mainigi M, Ord T, Iyer R, Braun J et al. Knockdown of the tetraspan protein epithelial membrane protein-2 inhibits implantation in the mouse. Dev Biol 2006; 292: 430–441.

    Article  CAS  Google Scholar 

  61. Wadehra M, Forbes A, Pushkarna N, Goodglick L, Gordon LK, Williams CJ et al. Epithelial membrane protein-2 regulates surface expression of alphavbeta3 integrin in the endometrium. Dev Biol 2005; 287: 336–345.

    Article  CAS  Google Scholar 

  62. Fu M, Maresh EL, Helguera GF, Kiyohara M, Qin Y, Ashki N et al. Rationale and preclinical efficacy of a novel anti-EMP2 antibody for the treatment of invasive breast cancer. Mol Cancer Ther 2014; 13: 902–915.

    Article  CAS  Google Scholar 

  63. Tirino V, Desiderio V, Paino F, Papaccio G, De Rosa M Methods for Cancer Stem Cell Detection and Isolation. In: Singh SR (ed). Somatic Stem Cells vol. 879. Humana Press, 2012, pp 513–529.

    Book  Google Scholar 

  64. Wadehra M, Forbes A, Pushkarna N, Goodglick L, Gordon LK, Williams CJ et al. Epithelial membrane protein-2 regulates surface expression of alphavbeta3 integrin in the endometrium. Dev Biol 2005; 287: 336–345.

    Article  CAS  Google Scholar 

  65. Morales SA, Mareninov S, Prasad P, Wadehra M, Braun J, Gordon LK . Collagen gel contraction by ARPE-19 cells is mediated by a FAK-Src dependent pathway. Exp Eye Res 2007; 85: 790–798.

    Article  CAS  Google Scholar 

  66. Barnett SF, Defeo-Jones D, Fu S, Hancock PJ, Haskell KM, Jones RE et al. Identification and characterization of pleckstrin-homology-domain-dependent and isoenzyme-specific Akt inhibitors. Biochem J 2005; 385: 399–408.

    Article  CAS  Google Scholar 

  67. Wang MY, Lu KV, Zhu S, Dia EQ, Vivanco I, Shackleford GM et al. Mammalian target of rapamycin inhibition promotes response to epidermal growth factor receptor kinase inhibitors in PTEN-deficient and PTEN-intact glioblastoma cells. Cancer Res 2006; 66: 7864–7869.

    Article  CAS  Google Scholar 

  68. Kao J, Salari K, Bocanegra M, Choi Y-L, Girard L, Gandhi J et al. Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. PLoS One 2009; 4: e6146.

    Article  Google Scholar 

  69. Faul F, Erdfelder E, Buchner A, Lang A-G . Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav Res Methods 2009; 41: 1149–1160.

    Article  Google Scholar 

Download references

Acknowledgements

This work was generously supported by the Early Detection Research Network NCI CA-86366 (L Goodglick), CA016042 (University of California at Los Angeles Jonsson Comprehensive Cancer Center Flow Cytometry Core), Charles Drew University/UCLA NIH U54-CA-143931 (JL and MW), the NIH/National Center for Advancing Translational Sciences (NCATS) UL1TR000124, and NCI R01 CA163971 (MW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Wadehra.

Ethics declarations

Competing interests

MW, LKG and JB are inventors on the University of California patents related to the anti-EMP2 IgG1 antibody presented in this work. They are also founders of Paganini Biopharma. MSW has financial holdings and is a scientific advisor for OncoMed Pharmaceuticals, Verastem, Paganini and MedImmune and receives research support from Dompe Pharmaceuticals and MedImmune. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiyohara, M., Dillard, C., Tsui, J. et al. EMP2 is a novel therapeutic target for endometrial cancer stem cells. Oncogene 36, 5793–5807 (2017). https://doi.org/10.1038/onc.2017.142

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.142

This article is cited by

Search

Quick links