Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Bone morphogenetic protein signaling mediated by ALK-2 and DLX2 regulates apoptosis in glioma-initiating cells

Abstract

Bone morphogenetic protein (BMP) signaling exerts antitumor activities in glioblastoma; however, its precise mechanisms remain to be elucidated. Here, we demonstrated that the BMP type I receptor ALK-2 (encoded by the ACVR1 gene) has crucial roles in apoptosis induction of patient-derived glioma-initiating cells (GICs), TGS-01 and TGS-04. We also characterized a BMP target gene, Distal-less homeobox 2 (DLX2), and found that DLX2 promoted apoptosis and neural differentiation of GICs. The tumor-suppressive effects of ALK-2 and DLX2 were further confirmed in a mouse orthotopic transplantation model. Interestingly, valproic acid (VPA), an anti-epileptic compound, induced BMP2, BMP4, ACVR1 and DLX2 mRNA expression with a concomitant increase in phosphorylation of Smad1/5. Consistently, we showed that treatment with VPA induced apoptosis of GICs, whereas silencing of ALK-2 or DLX2 expression partially suppressed it. Our study thus reveals BMP-mediated inhibitory mechanisms for glioblastoma, which explains, at least in part, the therapeutic effects of VPA.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352: 987–996.

    Article  CAS  PubMed  Google Scholar 

  2. Weller M, Cloughesy T, Perry JR, Wick W . Standards of care for treatment of recurrent glioblastoma—are we there yet? Neuro Oncol 2013; 15: 4–27.

    Article  PubMed  Google Scholar 

  3. Lathia JD, Mack SC, Mulkearns-Hubert EE, Valentim CL, Rich JN . Cancer stem cells in glioblastoma. Genes Dev 2015; 29: 1203–1217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Katagiri T, Watabe T . Bone morphogenetic proteins. Cold Spring Harb Perspect Biol 2016; 8: pii: a021899.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Davis H, Raja E, Miyazono K, Tsubakihara Y, Moustakas A . Mechanisms of action of bone morphogenetic proteins in cancer. Cytokine Growth Factor Rev 2016; 27: 81–92.

    Article  CAS  PubMed  Google Scholar 

  6. Piccirillo SG, Reynolds BA, Zanetti N, Lamorte G, Binda E, Broggi G et al. Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 2006; 444: 761–765.

    Article  CAS  PubMed  Google Scholar 

  7. Liu S, Yin F, Zhao M, Zhou C, Ren J, Huang Q et al. The homing and inhibiting effects of hNSCs-BMP4 on human glioma stem cells. Oncotarget 2016; 7: 17920–17931.

    PubMed  PubMed Central  Google Scholar 

  8. Zhou Z, Sun L, Wang Y, Wu Z, Geng J, Miu W et al. Bone morphogenetic protein 4 inhibits cell proliferation and induces apoptosis in glioma stem cells. Cancer Biother Radiopharm 2011; 26: 77–83.

    Article  CAS  PubMed  Google Scholar 

  9. Miyazono K, Kamiya Y, Morikawa M . Bone morphogenetic protein receptors and signal transduction. J Biochem 2010; 147: 35–51.

    Article  CAS  PubMed  Google Scholar 

  10. Savary K, Caglayan D, Caja L, Tzavlaki K, Bin Nayeem S, Bergström T et al. Snail depletes the tumorigenic potential of glioblastoma. Oncogene 2013; 32: 5409–5420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yan K, Wu Q, Yan DH, Lee CH, Rahim N, Tritschler I et al. Glioma cancer stem cells secrete Gremlin1 to promote their maintenance within the tumor hierarchy. Genes Dev 2014; 28: 1085–1100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee J, Son MJ, Woolard K, Donin NM, Li A, Cheng CH et al. Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. Cancer Cell 2008; 13: 69–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Carén H, Stricker SH, Bulstrode H, Gagrica S, Johnstone E, Bartlett TE et al. Glioblastoma stem cells respond to differentiation cues but fail to undergo commitment and terminal cell-cycle arrest. Stem Cell Rep 2015; 5: 829–842.

    Article  Google Scholar 

  14. Panganiban G, Rubenstein JL . Developmental functions of the Distal-less/Dlx homeobox genes. Development 2002; 129: 4371–4386.

    CAS  PubMed  Google Scholar 

  15. Ghanem N, Andrusiak MG, Svoboda D, Al Lafi SM, Julian LM, McClellan KA et al. The Rb/E2F pathway modulates neurogenesis through direct regulation of the Dlx1/Dlx2 bigene cluster. J Neurosci 2012; 32: 8219–8230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wu X, Rauch TA, Zhong X, Bennett WP, Latif F, Krex D et al. CpG island hypermethylation in human astrocytomas. Cancer Res 2010; 70: 2718–2727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Du Y, Yip H . Effects of bone morphogenetic protein 2 on Id expression and neuroblastoma cell differentiation. Differentiation 2010; 79: 84–92.

    Article  CAS  PubMed  Google Scholar 

  18. Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH . Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci USA 2004; 101: 16659–16664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Frew AJ, Johnstone RW, Bolden JE . Enhancing the apoptotic and therapeutic effects of HDAC inhibitors. Cancer Lett 2009; 280: 125–133.

    Article  CAS  PubMed  Google Scholar 

  20. Bezecny P . Histone deacetylase inhibitors in glioblastoma: pre-clinical and clinical experience. Med Oncol 2014; 31: 985.

    Article  PubMed  Google Scholar 

  21. Krauze AV, Myrehaug SD, Chang MG, Holdford DJ, Smith S, Shih J et al. A phase 2 study of concurrent radiation therapy, temozolomide, and the histone deacetylase inhibitor valproic acid for patients with glioblastoma. Int J Radiat Oncol Biol Phys 2015; 92: 986–992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mohedas AH, Xing X, Armstrong KA, Bullock AN, Cuny GD, Yu PB . Development of an ALK2-biased BMP type I receptor kinase inhibitor. ACS Chem Biol 2013; 8: 1291–1302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cai J, Orlova VV, Cai X, Eekhoff EM, Zhang K, Pei D et al. Induced pluripotent stem cells to model human fibrodysplasia ossificans progressiva. Stem Cell Rep 2015; 5: 963–970.

    Article  CAS  Google Scholar 

  24. Dey D, Bagarova J, Hatsell SJ, Armstrong KA, Huang L, Ermann J et al. Two tissue-resident progenitor lineages drive distinct phenotypes of heterotopic ossification. Sci Transl Med 2016; 8: 366ra163.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Choe Y, Kozlova A, Graf D, Pleasure SJ . Bone morphogenic protein signaling is a major determinant of dentate development. J Neurosci 2013; 33: 6766–6775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Podkowa M, Christova T, Zhao X, Jian Y, Attisano L . p21-activated kinase (PAK) is required for bone morphogenetic protein (BMP)-induced dendritogenesis in cortical neurons. Mol Cell Neurosci 2013; 57: 83–92.

    Article  CAS  PubMed  Google Scholar 

  27. Liu XS, Chopp M, Kassis H, Jia LF, Hozeska-Solgot A, Zhang RL et al. Valproic acid increases white matter repair and neurogenesis after stroke. Neuroscience 2012; 220: 313–321.

    Article  CAS  PubMed  Google Scholar 

  28. Su Z, Niu W, Liu ML, Zou Y, Zhang CL . In vivo conversion of astrocytes to neurons in the injured adult spinal cord. Nat Commun 2014; 5: 3338–3352.

    Article  PubMed  Google Scholar 

  29. Hu W, Qiu B, Guan W, Wang Q, Wang M, Li W et al. Direct conversion of normal and Alzheimer's disease human fibroblasts into neuronal cells by small molecules. Cell Stem Cell 2015; 17: 204–212.

    Article  CAS  PubMed  Google Scholar 

  30. Panchision DM, Pickel JM, Studer L, Lee SH, Turner PA, Hazel TG et al. Sequential actions of BMP receptors control neural precursor cell production and fate. Genes Dev 2001; 15: 2094–2110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu S, Yin F, Fan W, Wang S, Guo XR, Zhang JN et al. Over-expression of BMPR-IB reduces the malignancy of glioblastoma cells by upregulation of p21 and p27Kip1. J Exp Clin Cancer Res 2012; 31: 52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hover LD, Owens P, Munden AL, Wang J, Chambless LB, Hopkins CR et al. Bone morphogenetic protein signaling promotes tumorigenesis in a murine model of high-grade glioma. Neuro Oncol 2016; 18: 928–938.

    Article  CAS  PubMed  Google Scholar 

  33. Kendall SE, Battelli C, Irwin S, Mitchell JG, Glackin CA, Verdi JM . NRAGE mediates p38 activation and neural progenitor apoptosis via the bone morphogenetic protein signaling cascade. Mol Cell Biol 2005; 25: 7711–7724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hallahan AR, Pritchard JI, Chandraratna RA, Ellenbogen RG, Geyer JR, Overland RP et al. BMP-2 mediates retinoid-induced apoptosis in medulloblastoma cells through a paracrine effect. Nat Med 2003; 9: 1033–1038.

    Article  CAS  PubMed  Google Scholar 

  35. ten Dijke P, Yamashita H, Sampath TK, Reddi AH, Estevez M, Riddle DL et al. Identification of type I receptors for osteogenic protein-1 and bone morphogenetic protein-4. J Biol Chem 1994; 269: 16985–16988.

    CAS  PubMed  Google Scholar 

  36. Yu PB, Deng DY, Beppu H, Hong CC, Lai C, Hoyng SA et al. Bone morphogenetic protein (BMP) type II receptor is required for BMP-mediated growth arrest and differentiation in pulmonary artery smooth muscle cells. J Biol Chem 2008; 283: 3877–3888.

    Article  CAS  PubMed  Google Scholar 

  37. Fontebasso AM, Papillon-Cavanagh S, Schwartzentruber J, Nikbakht H, Gerges N, Fiset PO et al. Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma. Nat Genet 2014; 46: 462–466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Buczkowicz P, Hoeman C, Rakopoulos P, Pajovic S, Letourneau L, Dzamba M et al. Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nat Genet 2014; 46: 451–456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Taylor KR, Mackay A, Truffaux N, Butterfield YS, Morozova O, Philippe C et al. Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma. Nat Genet 2014; 46: 457–461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jones C, Perryman L, Hargrave D . Paediatric and adult malignant glioma: close relatives or distant cousins? Nat Rev Clin Oncol 2012; 9: 400–413.

    Article  CAS  PubMed  Google Scholar 

  41. Park GT, Denning MF, Morasso MI . Phosphorylation of murine homeodomain protein Dlx3 by protein kinase C. FEBS Lett 2001; 496: 60–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li H, Jeong HM, Choi YH, Kim JH, Choi JK, Yeo CY et al. Protein kinase a phosphorylates Dlx3 and regulates the function of Dlx3 during osteoblast differentiation. J Cell Biochem 2014; 115: 2004–2011.

    CAS  PubMed  Google Scholar 

  43. Andrews GL, Yun K, Rubenstein JL, Mastick GS . Dlx transcription factors regulate differentiation of dopaminergic neurons of the ventral thalamus. Mol Cell Neurosci 2003; 23: 107–120.

    Article  CAS  PubMed  Google Scholar 

  44. Hide T, Takezaki T, Nakatani Y, Nakamura H, Kuratsu J, Kondo T . Sox11 prevents tumorigenesis of glioma-initiating cells by inducing neuronal differentiation. Cancer Res 2009; 69: 7953–7959.

    Article  CAS  PubMed  Google Scholar 

  45. Guichet PO, Bieche I, Teigell M, Serguera C, Rothhut B, Rigau V et al. Cell death and neuronal differentiation of glioblastoma stem-like cells induced by neurogenic transcription factors. Glia 2013; 61: 225–239.

    Article  PubMed  Google Scholar 

  46. Santra M, Zhang X, Santra S, Jiang F, Chopp M . Ectopic doublecortin gene expression suppresses the malignant phenotype in glioblastoma cells. Cancer Res 2006; 66: 11726–11735.

    Article  CAS  PubMed  Google Scholar 

  47. Mehta S, Huillard E, Kesari S, Maire CL, Golebiowski D, Harrington EP et al. The central nervous system-restricted transcription factor Olig2 opposes p53 responses to genotoxic damage in neural progenitors and malignant glioma. Cancer Cell 2011; 19: 359–371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Anido J, Sáez-Borderías A, Gonzàlez-Juncà A, Rodón L, Folch G, Carmona MA et al. TGF-β receptor inhibitors target the CD44high/Id1high glioma-initiating cell population in human glioblastoma. Cancer Cell 2010; 18: 655–668.

    Article  CAS  PubMed  Google Scholar 

  49. Moon BS, Yoon JY, Kim MY, Lee SH, Choi T, Choi KY . Bone morphogenetic protein 4 stimulates neuronal differentiation of neuronal stem cells through the ERK pathway. Exp Mol Med 2009; 41: 116–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ikushima H, Todo T, Ino Y, Takahashi M, Miyazawa K, Miyazono K . Autocrine TGF-β signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Cell Stem Cell 2009; 5: 504–514.

    Article  CAS  PubMed  Google Scholar 

  51. Fujii M, Takeda K, Imamura T, Aoki H, Sampath TK, Enomoto S et al. Roles of bone morphogenetic protein type I receptors and Smad proteins in osteoblast and chondroblast differentiation. Mol Biol Cell 1999; 10: 3801–3813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hoshino Y, Nishida J, Katsuno Y, Koinuma D, Aoki T, Kokudo N et al. Smad4 decreases the population of pancreatic cancer-initiating cells through transcriptional repression of ALDH1A1. Am J Pathol 2015; 185: 1457–1470.

    Article  CAS  PubMed  Google Scholar 

  53. Ehata S, Hanyu A, Fujime M, Katsuno Y, Fukunaga E, Goto K et al. Ki26894, a novel transforming growth factor-beta type I receptor kinase inhibitor, inhibits in vitro invasion and in vivo bone metastasis of a human breast cancer cell line. Cancer Sci 2007; 98: 127–133.

    Article  CAS  PubMed  Google Scholar 

  54. Sakurai T, Isogaya K, Sakai S, Morikawa M, Morishita Y, Ehata S et al. RNA-binding motif protein 47 inhibits Nrf2 activity to suppress tumor growth in lung adenocarcinoma. Oncogene 2016; 35: 5000–5009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2012; 2: 401–404.

    Article  PubMed  Google Scholar 

  56. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 2013; 6: l1.

    Article  Google Scholar 

  57. Mizutani A, Koinuma D, Seimiya H, Miyazono K . The Arkadia-ESRP2 axis suppresses tumor progression: analyses in clear-cell renal cell carcinoma. Oncogene 2016; 35: 3514–3523.

    Article  CAS  PubMed  Google Scholar 

  58. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 2012; 7: 562–578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kodama Y, Mashima J, Kosuge T, Katayama T, Fujisawa T, Kaminuma E et al. The DDBJ Japanese Genotype-phenotype Archive for genetic and phenotypic human data. Nucleic Acids Res 2015; 43: 18–22.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Y Kakiuchi for animal care. This work was supported by Grants-in-Aid for Scientific Research (KAKENHI 22112002) from the Ministry of Education, Culture, Sports and Technology of Japan (MEXT) and Scientific Research (B) and (S) (24390070 and 15H05774, respectively, KM) from the Japan Society for the Promotion of Science (JSPS), Grant-in-Aid from the Ministry of Health, Labour and Welfare of Japan (201220012C), the JSPS Core-to-Core Program 'Cooperative International Framework in TGF-β Family Signalling', and a grant from the Naito Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Miyazono.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raja, E., Komuro, A., Tanabe, R. et al. Bone morphogenetic protein signaling mediated by ALK-2 and DLX2 regulates apoptosis in glioma-initiating cells. Oncogene 36, 4963–4974 (2017). https://doi.org/10.1038/onc.2017.112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2017.112

This article is cited by

Search

Quick links