Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

STRIPAK complexes in cell signaling and cancer

Subjects

Abstract

Striatin-interacting phosphatase and kinase (STRIPAK) complexes are striatin-centered multicomponent supramolecular structures containing both kinases and phosphatases. STRIPAK complexes are evolutionarily conserved and have critical roles in protein (de)phosphorylation. Recent studies indicate that STRIPAK complexes are emerging mediators and regulators of multiple vital signaling pathways including Hippo, MAPK (mitogen-activated protein kinase), nuclear receptor and cytoskeleton remodeling. Different types of STRIPAK complexes are extensively involved in a variety of fundamental biological processes ranging from cell growth, differentiation, proliferation and apoptosis to metabolism, immune regulation and tumorigenesis. Growing evidence correlates dysregulation of STRIPAK complexes with human diseases including cancer. In this review, we summarize the current understanding of the assembly and functions of STRIPAK complexes, with a special focus on cell signaling and cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Glatter T, Wepf A, Aebersold R, Gstaiger M . An integrated workflow for charting the human interaction proteome: insights into the PP2A system. Mol Syst Biol 2009; 5: 237.

    PubMed  PubMed Central  Google Scholar 

  2. Goudreault M, D'Ambrosio LM, Kean MJ, Mullin MJ, Larsen BG, Sanchez A et al. A PP2A phosphatase high density interaction network identifies a novel striatin-interacting phosphatase and kinase complex linked to the cerebral cavernous malformation 3 (CCM3) protein. Mol Cell Proteomics 2009; 8: 157–171.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ribeiro PS, Josue F, Wepf A, Wehr MC, Rinner O, Kelly G et al. Combined functional genomic and proteomic approaches identify a PP2A complex as a negative regulator of Hippo signaling. Mol Cell 2010; 39: 521–534.

    CAS  PubMed  Google Scholar 

  4. Hwang J, Pallas DC . STRIPAK complexes: structure, biological function, and involvement in human diseases. Int J Biochem Cell Biol 2014; 47C: 118–148.

    Google Scholar 

  5. Castets F, Bartoli M, Barnier JV, Baillat G, Salin P, Moqrich A et al. A novel calmodulin-binding protein, belonging to the WD-repeat family, is localized in dendrites of a subset of CNS neurons. J Cell Biol 1996; 134: 1051–1062.

    CAS  PubMed  Google Scholar 

  6. Kachidian P, Vuillet J, Bartoli M, Castets F, Nieoullon A, Kerkerian-Le Goff L . Relationships between striatin-containing neurons and cortical or thalamic afferent fibres in the rat striatum. An ultrastructural study by dual labelling. Neuroscience 1998; 85: 111–122.

    CAS  PubMed  Google Scholar 

  7. Moqrich A, Mattei MG, Bartoli M, Rakitina T, Baillat G, Monneron A et al. Cloning of human striatin cDNA (STRN), gene mapping to 2p22-p21, and preferential expression in brain. Genomics 1998; 51: 136–139.

    CAS  PubMed  Google Scholar 

  8. Salin P, Kachidian P, Bartoli M, Castets F . Distribution of striatin, a newly identified calmodulin-binding protein in the rat brain: an in situ hybridization and immunocytochemical study. J Comp Neurol 1998; 397: 41–59.

    CAS  PubMed  Google Scholar 

  9. Castets F, Rakitina T, Gaillard S, Moqrich A, Mattei MG, Monneron A . Zinedin, SG2NA, and striatin are calmodulin-binding, WD repeat proteins principally expressed in the brain. J Biol Chem 2000; 275: 19970–19977.

    CAS  PubMed  Google Scholar 

  10. Muro Y, Chan EK, Landberg G, Tan EM . A cell-cycle nuclear autoantigen containing WD-40 motifs expressed mainly in S and G2 phase cells. Biochem Biophys Res Commun 1995; 207: 1029–1037.

    CAS  PubMed  Google Scholar 

  11. Gaillard S, Bartoli M, Castets F, Monneron A . Striatin, a calmodulin-dependent scaffolding protein, directly binds caveolin-1. FEBS Lett 2001; 508: 49–52.

    CAS  PubMed  Google Scholar 

  12. Kean MJ, Ceccarelli DF, Goudreault M, Sanches M, Tate S, Larsen B et al. Structure-function analysis of core STRIPAK proteins: a signaling complex implicated in Golgi polarization. J Biol Chem 2011; 286: 25065–25075.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hansen CG, Nichols BJ . Exploring the caves: cavins, caveolins and caveolae. Trends Cell Biol 2010; 20: 177–186.

    CAS  PubMed  Google Scholar 

  14. Sotgia F, Martinez-Outschoorn UE, Howell A, Pestell RG, Pavlides S, Lisanti MP . Caveolin-1 and cancer metabolism in the tumor microenvironment: markers, models, and mechanisms. Annu Rev Pathol 2012; 7: 423–467.

    CAS  PubMed  Google Scholar 

  15. Lu Q, Pallas DC, Surks HK, Baur WE, Mendelsohn ME, Karas RH . Striatin assembles a membrane signaling complex necessary for rapid, nongenomic activation of endothelial NO synthase by estrogen receptor alpha. Proc Natl Acad Sci USA 2004; 101: 17126–17131.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Bartoli M, Monneron A, Ladant D . Interaction of calmodulin with striatin, a WD-repeat protein present in neuronal dendritic spines. J Biol Chem 1998; 273: 22248–22253.

    CAS  PubMed  Google Scholar 

  17. Bartoli M, Ternaux JP, Forni C, Portalier P, Salin P, Amalric M et al. Down-regulation of striatin, a neuronal calmodulin-binding protein, impairs rat locomotor activity. J Neurobiol 1999; 40: 234–243.

    CAS  PubMed  Google Scholar 

  18. Stirnimann CU, Petsalaki E, Russell RB, Muller CW . WD40 proteins propel cellular networks. Trends Biochem Sci 2010; 35: 565–574.

    Article  CAS  PubMed  Google Scholar 

  19. Gordon J, Hwang J, Carrier KJ, Jones CA, Kern QL, Moreno CS et al. Protein phosphatase 2a (PP2A) binds within the oligomerization domain of striatin and regulates the phosphorylation and activation of the mammalian Ste20-Like kinase Mst3. BMC Biochem 2011; 12: 54.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Breitman M, Zilberberg A, Caspi M, Rosin-Arbesfeld R . The armadillo repeat domain of the APC tumor suppressor protein interacts with Striatin family members. Biochim Biophys Acta 2008; 1783: 1792–1802.

    CAS  PubMed  Google Scholar 

  21. Nelson S, Nathke IS . Interactions and functions of the adenomatous polyposis coli (APC) protein at a glance. J Cell Sci 2013; 126: 873–877.

    CAS  PubMed  Google Scholar 

  22. Shi Y . Serine/threonine phosphatases: mechanism through structure. Cell 2009; 139: 468–484.

    CAS  PubMed  Google Scholar 

  23. Moreno CS, Park S, Nelson K, Ashby D, Hubalek F, Lane WS et al. WD40 repeat proteins striatin and S/G(2) nuclear autoantigen are members of a novel family of calmodulin-binding proteins that associate with protein phosphatase 2A. J Biol Chem 2000; 275: 5257–5263.

    CAS  PubMed  Google Scholar 

  24. Chen C, Shi Z, Zhang W, Chen M, He F, Zhang Z et al. Striatins contain a noncanonical coiled coil that binds protein phosphatase 2 A A subunit to form a 2:2 heterotetrameric core of striatin-interacting phosphatase and kinase (STRIPAK) complex. J Biol Chem 2014; 289: 9651–9661.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Yu FX, Zhao B, Guan KL . Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 2015; 163: 811–828.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Shi Z, Jiao S, Zhou Z . Structural dissection of Hippo signaling. Acta Biochim Biophys Sin (Shanghai) 2015; 47: 29–38.

    CAS  Google Scholar 

  27. Volodko N, Gordon M, Salla M, Ghazaleh HA, Baksh S . RASSF tumor suppressor gene family: Biological functions and regulation. FEBS Lett 2014; 588: 2671–2684.

    CAS  PubMed  Google Scholar 

  28. Sherwood V, Recino A, Jeffries A, Ward A, Chalmers AD . The N-terminal RASSF family: a new group of Ras-association-domain-containing proteins, with emerging links to cancer formation. Biochem J 2010; 425: 303–311.

    CAS  Google Scholar 

  29. Khokhlatchev A, Rabizadeh S, Xavier R, Nedwidek M, Chen T, Zhang XF et al. Identification of a novel Ras-regulated proapoptotic pathway. Curr Biol 2002; 12: 253–265.

    CAS  PubMed  Google Scholar 

  30. Praskova M, Khoklatchev A, Ortiz-Vega S, Avruch J . Regulation of the MST1 kinase by autophosphorylation, by the growth inhibitory proteins, RASSF1 and NORE1, and by Ras. Biochem J 2004; 381: 453–462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ikeda M, Kawata A, Nishikawa M, Tateishi Y, Yamaguchi M, Nakagawa K et al. Hippo pathway-dependent and -independent roles of RASSF6. Sci Signal 2009; 2: ra59.

    PubMed  Google Scholar 

  32. Oh HJ, Lee KK, Song SJ, Jin MS, Song MS, Lee JH et al. Role of the tumor suppressor RASSF1A in Mst1-mediated apoptosis. Cancer Res 2006; 66: 2562–2569.

    CAS  PubMed  Google Scholar 

  33. Guo C, Tommasi S, Liu L, Yee JK, Dammann R, Pfeifer GP . RASSF1A is part of a complex similar to the Drosophila Hippo/Salvador/Lats tumor-suppressor network. Curr Biol 2007; 17: 700–705.

    CAS  PubMed  Google Scholar 

  34. Guo C, Zhang X, Pfeifer GP . The tumor suppressor RASSF1A prevents dephosphorylation of the mammalian STE20-like kinases MST1 and MST2. J Biol Chem 2011; 286: 6253–6261.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Cooper WN, Hesson LB, Matallanas D, Dallol A, von Kriegsheim A, Ward R et al. RASSF2 associates with and stabilizes the proapoptotic kinase MST2. Oncogene 2009; 28: 2988–2998.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Song H, Oh S, Oh HJ, Lim DS . Role of the tumor suppressor RASSF2 in regulation of MST1 kinase activity. Biochem Biophys Res Commun 2010; 391: 969–973.

    CAS  PubMed  Google Scholar 

  37. Sugden PH, McGuffin LJ, Clerk A . SOcK, MiSTs, MASK and STicKs: the GCKIII (germinal centre kinase III) kinases and their heterologous protein-protein interactions. Biochem J 2013; 454: 13–30.

    CAS  PubMed  Google Scholar 

  38. Sung V, Luo W, Qian D, Lee I, Jallal B, Gishizky M . The Ste20 kinase MST4 plays a role in prostate cancer progression. Cancer Res 2003; 63: 3356–3363.

    CAS  PubMed  Google Scholar 

  39. Friedman A, Perrimon N . A functional RNAi screen for regulators of receptor tyrosine kinase and ERK signalling. Nature 2006; 444: 230–234.

    CAS  PubMed  Google Scholar 

  40. Horn T, Sandmann T, Fischer B, Axelsson E, Huber W, Boutros M . Mapping of signaling networks through synthetic genetic interaction analysis by RNAi. Nat Methods 2011; 8: 341–346.

    CAS  PubMed  Google Scholar 

  41. Hao Q, Feng M, Shi Z, Li C, Chen M, Wang W et al. Structural insights into regulatory mechanisms of MO25-mediated kinase activation. J Struct Biol 2014; 186: 224–233.

    CAS  PubMed  Google Scholar 

  42. Shi Z, Jiao S, Zhang Z, Ma M, Zhang Z, Chen C et al. Structure of the MST4 in complex with MO25 provides insights into its activation mechanism. Structure 2013; 21: 449–461.

    CAS  PubMed  Google Scholar 

  43. Wang Y, Liu H, Zhang Y, Ma D . cDNA cloning and expression of an apoptosis-related gene, humanTFAR15 gene. Sci China C. Sci China C 1999; 42: 323–329.

    CAS  Google Scholar 

  44. Bergametti F, Denier C, Labauge P, Arnoult M, Boetto S, Clanet M et al. Mutations within the programmed cell death 10 gene cause cerebral cavernous malformations. Am J Hum Genet 2005; 76: 42–51.

    CAS  PubMed  Google Scholar 

  45. Li X, Ji W, Zhang R, Folta-Stogniew E, Min W, Boggon TJ . Molecular recognition of leucine-aspartate repeat (LD) motifs by the focal adhesion targeting homology domain of cerebral cavernous malformation 3 (CCM3). J Biol Chem 2011; 286: 26138–26147.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang M, Dong L, Shi Z, Jiao S, Zhang Z, Zhang W et al. Structural mechanism of CCM3 heterodimerization with GCKIII kinases. Structure 2013; 21: 680–688.

    CAS  PubMed  Google Scholar 

  47. Ceccarelli DF, Laister RC, Mulligan VK, Kean MJ, Goudreault M, Scott IC et al. CCM3/PDCD10 heterodimerizes with germinal center kinase III (GCKIII) proteins using a mechanism analogous to CCM3 homodimerization. J Biol Chem 2011; 286: 25056–25064.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ma X, Zhao H, Shan J, Long F, Chen Y, Chen Y et al. PDCD10 interacts with Ste20-related kinase MST4 to promote cell growth and transformation via modulation of the ERK pathway. Mol Biol Cell 2007; 18: 1965–1978.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Baillat G, Moqrich A, Castets F, Baude A, Bailly Y, Benmerah A et al. Molecular cloning and characterization of phocein, a protein found from the Golgi complex to dendritic spines. Mol Biol Cell 2001; 12: 663–673.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Moreno CS, Lane WS, Pallas DC . A mammalian homolog of yeast MOB1 is both a member and a putative substrate of striatin family-protein phosphatase 2 A complexes. J Biol Chem 2001; 276: 24253–24260.

    CAS  PubMed  Google Scholar 

  51. Haeberle AM, Castets F, Bombarde G, Baillat G, Bailly Y . Immunogold localization of phocein in dendritic spines. J Comp Neurol 2006; 495: 336–350.

    CAS  PubMed  Google Scholar 

  52. Baillat G, Gaillard S, Castets F, Monneron A . Interactions of phocein with nucleoside-diphosphate kinase, Eps15, and dynamin I. J Biol Chem 2002; 277: 18961–18966.

    CAS  PubMed  Google Scholar 

  53. Bailly YJ, Castets F . Phocein: a potential actor in vesicular trafficking at Purkinje cell dendritic spines. Cerebellum 2007; 6: 344–352.

    CAS  PubMed  Google Scholar 

  54. Schulte J, Sepp KJ, Jorquera RA, Wu C, Song Y, Hong P et al. DMob4/Phocein regulates synapse formation, axonal transport, and microtubule organization. J Neurosci 2010; 30: 5189–5203.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hergovich A . MOB control: reviewing a conserved family of kinase regulators. Cell Signal 2011; 23: 1433–1440.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Stegert MR, Hergovich A, Tamaskovic R, Bichsel SJ, Hemmings BA . Regulation of NDR protein kinase by hydrophobic motif phosphorylation mediated by the mammalian Ste20-like kinase MST3. Mol Cell Biol 2005; 25: 11019–11029.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Cornils H, Kohler RS, Hergovich A, Hemmings BA . Human NDR kinases control G(1)/S cell cycle transition by directly regulating p21 stability. Mol Cell Biol 2011; 31: 1382–1395.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Trammell MA, Mahoney NM, Agard DA, Vale RD . Mob4 plays a role in spindle focusing in Drosophila S2 cells. J Cell Sci 2008; 121: 1284–1292.

    CAS  PubMed  Google Scholar 

  59. Bai SW, Herrera-Abreu MT, Rohn JL, Racine V, Tajadura V, Suryavanshi N et al. Identification and characterization of a set of conserved and new regulators of cytoskeletal organization, cell morphology and migration. BMC Biol 2011; 9: 54.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Wagh V, Doss MX, Sabour D, Niemann R, Meganathan K, Jagtap S et al. Fam40b is required for lineage commitment of murine embryonic stem cells. Cell Death Dis 2014; 5: e1320.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Sakuma C, Kawauchi T, Haraguchi S, Shikanai M, Yamaguchi Y, Gelfand VI et al. Drosophila Strip serves as a platform for early endosome organization during axon elongation. Nat Commun 2014; 5: 5180.

    CAS  PubMed  Google Scholar 

  62. Wigle JT, Demchyshyn L, Pratt MA, Staines WA, Salih M, Tuana BS . Molecular cloning, expression, and chromosomal assignment of sarcolemmal-associated proteins. A family of acidic amphipathic alpha-helical proteins associated with the membrane. J Biol Chem 1997; 272: 32384–32394.

    CAS  PubMed  Google Scholar 

  63. Wielowieyski PA, Sevinc S, Guzzo R, Salih M, Wigle JT, Tuana BS . Alternative splicing, expression, and genomic structure of the 3′ region of the gene encoding the sarcolemmal-associated proteins (SLAPs) defines a novel class of coiled-coil tail-anchored membrane proteins. J Biol Chem 2000; 275: 38474–38481.

    CAS  PubMed  Google Scholar 

  64. Byers JT, Guzzo RM, Salih M, Tuana BS . Hydrophobic profiles of the tail anchors in SLMAP dictate subcellular targeting. BMC Cell Biol 2009; 10: 48.

    PubMed  PubMed Central  Google Scholar 

  65. Guzzo RM, Salih M, Moore ED, Tuana BS . Molecular properties of cardiac tail-anchored membrane protein SLMAP are consistent with structural role in arrangement of excitation-contraction coupling apparatus. Am J Physiol Heart Circ Physiol 2005; 288: H1810–H1819.

    CAS  PubMed  Google Scholar 

  66. Guzzo RM, Sevinc S, Salih M, Tuana BS . A novel isoform of sarcolemmal membrane-associated protein (SLMAP) is a component of the microtubule organizing centre. J Cell Sci 2004; 117: 2271–2281.

    CAS  PubMed  Google Scholar 

  67. Guzzo RM, Wigle J, Salih M, Moore ED, Tuana BS . Regulated expression and temporal induction of the tail-anchored sarcolemmal-membrane-associated protein is critical for myoblast fusion. Biochem J 2004; 381: 599–608.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Beck AH, Lee CH, Witten DM, Gleason BC, Edris B, Espinosa I et al. Discovery of molecular subtypes in leiomyosarcoma through integrative molecular profiling. Oncogene 2010; 29: 845–854.

    CAS  PubMed  Google Scholar 

  69. Mills AM, Beck AH, Montgomery KD, Zhu SX, Espinosa I, Lee CH et al. Expression of subtype-specific group 1 leiomyosarcoma markers in a wide variety of sarcomas by gene expression analysis and immunohistochemistry. Am J Surg Pathol 2011; 35: 583–589.

    PubMed  PubMed Central  Google Scholar 

  70. Ishikawa T, Sato A, Marcou CA, Tester DJ, Ackerman MJ, Crotti L et al. A novel disease gene for Brugada syndrome: sarcolemmal membrane-associated protein gene mutations impair intracellular trafficking of hNav1.5. Circ Arrhythm Electrophysiol 2012; 5: 1098–1107.

    CAS  PubMed  Google Scholar 

  71. Dadgostar H, Doyle SE, Shahangian A, Garcia DE, Cheng G . T3JAM, a novel protein that specifically interacts with TRAF3 and promotes the activation of JNK(1). FEBS Lett 2003; 553: 403–407.

    CAS  PubMed  Google Scholar 

  72. Boada-Romero E, Letek M, Fleischer A, Pallauf K, Ramon-Barros C, Pimentel-Muinos FX . TMEM59 defines a novel ATG16L1-binding motif that promotes local activation of LC3. EMBO J 2013; 32: 566–582.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Peng S, Wang K, Gu Y, Chen Y, Nan X, Xing J et al. TRAF3IP3, a novel autophagy up-regulated gene, is involved in marginal zone B lymphocyte development and survival. Clin Exp Immunol 2015; 182: 57–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Zou Q, Jin J, Xiao Y, Hu H, Zhou X, Jie Z et al. T cell development involves TRAF3IP3-mediated ERK signaling in the Golgi. J Exp Med 2015; 212: 1323–1336.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Huang J, Liu T, Xu LG, Chen D, Zhai Z, Shu HB . SIKE is an IKK epsilon/TBK1-associated suppressor of TLR3- and virus-triggered IRF-3 activation pathways. EMBO J 2005; 24: 4018–4028.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Marion JD, Roberts CF, Call RJ, Forbes JL, Nelson KT, Bell JE et al. Mechanism of endogenous regulation of the type I interferon response by suppressor of IkappaB kinase epsilon (SIKE), a novel substrate of TANK-binding kinase 1 (TBK1). J Biol Chem 2013; 288: 18612–18623.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Ito M, Masumi A, Mochida K, Kukihara H, Moriishi K, Matsuura Y et al. Peripheral B cells may serve as a reservoir for persistent hepatitis C virus infection. J Innate Immun 2010; 2: 607–617.

    CAS  PubMed  Google Scholar 

  78. Hsieh JY, Huang TS, Cheng SM, Lin WS, Tsai TN, Lee OK et al. miR-146a-5p circuitry uncouples cell proliferation and migration, but not differentiation, in human mesenchymal stem cells. Nucleic Acids Res 2013; 41: 9753–9763.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Sukotjo C, Abanmy AA, Ogawa T, Nishimura I . Molecular cloning of wound inducible transcript (wit 3.0) differentially expressed in edentulous oral mucosa undergoing tooth extraction wound-healing. J Dent Res 2002; 81: 229–235.

    CAS  PubMed  Google Scholar 

  80. Sukotjo C, Lin A, Song K, Ogawa T, Wu B, Nishimura I . Oral fibroblast expression of wound-inducible transcript 3.0 (wit3.0) accelerates the collagen gel contraction in vitro. J Biol Chem 2003; 278: 51527–51534.

    CAS  PubMed  Google Scholar 

  81. Lin A, Hokugo A, Choi J, Nishimura I . Small cytoskeleton-associated molecule, fibroblast growth factor receptor 1 oncogene partner 2/wound inducible transcript-3.0 (FGFR1OP2/wit3.0), facilitates fibroblast-driven wound closure. Am J Pathol 2010; 176: 108–121.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Suwanwela J, Lee J, Lin A, Ucer TC, Devlin H, Sinsheimer J et al. A genetic association study of single nucleotide polymorphisms in FGFR1OP2/wit3.0 and long-term atrophy of edentulous mandible. PLoS One 2011; 6: e16204.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Kim JH, Oh MY, Paek J, Lee J . Association between FGFR1OP2/wit3.0 polymorphisms and residual ridge resorption of mandible in Korean population. PLoS One 2012; 7: e42734.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Al Zeyadi M, Dimova I, Ranchich V, Rukova B, Nesheva D, Hamude Z et al. Whole genome microarray analysis in non-small cell lung cancer. Biotechnol Biotechnol Equip 2015; 29: 111–118.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Grand EK, Grand FH, Chase AJ, Ross FM, Corcoran MM, Oscier DG et al. Identification of a novel gene, FGFR1OP2, fused to FGFR1 in 8p11 myeloproliferative syndrome. Genes Chromosomes Cancer 2004; 40: 78–83.

    CAS  PubMed  Google Scholar 

  86. Xiao S, McCarthy JG, Aster JC, Fletcher JA . ZNF198-FGFR1 transforming activity depends on a novel proline-rich ZNF198 oligomerization domain. Blood 2000; 96: 699–704.

    CAS  PubMed  Google Scholar 

  87. Jackson CC, Medeiros LJ, Miranda RN . 8p11 Myeloproliferative syndrome: a review. Hum Pathol 2010; 41: 461–476.

    CAS  PubMed  Google Scholar 

  88. Macdonald D, Reiter A, Cross NC . The 8p11 myeloproliferative syndrome: a distinct clinical entity caused by constitutive activation of FGFR1. Acta Haematol 2002; 107: 101–107.

    CAS  PubMed  Google Scholar 

  89. Ohoka Y, Takai Y . Isolation and characterization of cortactin isoforms and a novel cortactin-binding protein, CBP90. Genes Cells 1998; 3: 603–612.

    CAS  PubMed  Google Scholar 

  90. Chen YK, Chen CY, Hu HT, Hsueh YP . CTTNBP2, but not CTTNBP2NL, regulates dendritic spinogenesis and synaptic distribution of the striatin-PP2A complex. Mol Biol Cell 2012; 23: 4383–4392.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Cheung J, Petek E, Nakabayashi K, Tsui LC, Vincent JB, Scherer SW . Identification of the human cortactin-binding protein-2 gene from the autism candidate region at 7q31. Genomics 2001; 78: 7–11.

    CAS  PubMed  Google Scholar 

  92. Coolen MW, Stirzaker C, Song JZ, Statham AL, Kassir Z, Moreno CS et al. Consolidation of the cancer genome into domains of repressive chromatin by long-range epigenetic silencing (LRES) reduces transcriptional plasticity. Nat Cell Biol 2010; 12: 235–246.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Cha JD, Kim HJ, Cha IH . Genetic alterations in oral squamous cell carcinoma progression detected by combining array-based comparative genomic hybridization and multiplex ligation-dependent probe amplification. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011; 111: 594–607.

    PubMed  Google Scholar 

  94. Pan D . Hippo signaling in organ size control. Genes Dev 2007; 21: 886–897.

    CAS  PubMed  Google Scholar 

  95. Zhao B, Li L, Lei Q, Guan KL . The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev 2010; 24: 862–874.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Jiao S, Wang H, Shi Z, Dong A, Zhang W, Song X et al. A peptide mimicking VGLL4 function acts as a YAP antagonist therapy against gastric cancer. Cancer Cell 2014; 25: 166–180.

    CAS  PubMed  Google Scholar 

  97. Koontz LM, Liu-Chittenden Y, Yin F, Zheng Y, Yu J, Huang B et al. The Hippo effector Yorkie controls normal tissue growth by antagonizing scalloped-mediated default repression. Dev Cell 2013; 25: 388–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Guo T, Lu Y, Li P, Yin MX, Lv D, Zhang W et al. A novel partner of Scalloped regulates Hippo signaling via antagonizing Scalloped-Yorkie activity. Cell Res 2013; 23: 1201–1214.

    PubMed  PubMed Central  Google Scholar 

  99. Zhang W, Gao Y, Li P, Shi Z, Guo T, Li F et al. VGLL4 functions as a new tumor suppressor in lung cancer by negatively regulating the YAP-TEAD transcriptional complex. Cell Res 2014; 24: 331–343.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Couzens AL, Knight JD, Kean MJ, Teo G, Weiss A, Dunham WH et al. Protein interaction network of the mammalian Hippo pathway reveals mechanisms of kinase-phosphatase interactions. Sci Signal 2013; 6: rs15.

    PubMed  Google Scholar 

  101. Hauri S, Wepf A, van Drogen A, Varjosalo M, Tapon N, Aebersold R et al. Interaction proteome of human Hippo signaling: modular control of the co-activator YAP1. Mol Syst Biol 2013; 9: 713.

    PubMed  PubMed Central  Google Scholar 

  102. Hata Y, Timalsina S, Maimaiti S . Okadaic acid: a tool to study the hippo pathway. Mar Drugs 2013; 11: 896–902.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Mohseni M, Sun J, Lau A, Curtis S, Goldsmith J, Fox VL et al. A genetic screen identifies an LKB1-MARK signalling axis controlling the Hippo-YAP pathway. Nat Cell Biol 2014; 16: 108–117.

    CAS  PubMed  Google Scholar 

  104. Polesello C, Huelsmann S, Brown NH, Tapon N . The Drosophila RASSF homolog antagonizes the hippo pathway. Curr Biol 2006; 16: 2459–2465.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Gloerich M, ten Klooster JP, Vliem MJ, Koorman T, Zwartkruis FJ, Clevers H et al. Rap2A links intestinal cell polarity to brush border formation. Nat Cell Biol 2012; 14: 793–801.

    CAS  PubMed  Google Scholar 

  106. ten Klooster JP, Jansen M, Yuan J, Oorschot V, Begthel H, Di Giacomo V et al. Mst4 and Ezrin induce brush borders downstream of the Lkb1/Strad/Mo25 polarization complex. Dev Cell 2009; 16: 551–562.

    CAS  PubMed  Google Scholar 

  107. Wang W, Xiao ZD, Li X, Aziz KE, Gan B, Johnson RL et al. AMPK modulates Hippo pathway activity to regulate energy homeostasis. Nat Cell Biol 2015; 17: 490–499.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Mo JS, Meng Z, Kim YC, Park HW, Hansen CG, Kim S et al. Cellular energy stress induces AMPK-mediated regulation of YAP and the Hippo pathway. Nat Cell Biol 2015; 17: 500–510.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Kyriakis JM, Avruch J . Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol Rev 2012; 92: 689–737.

    CAS  PubMed  Google Scholar 

  110. Kyriakis JM, Avruch J . Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 2001; 81: 807–869.

    CAS  PubMed  Google Scholar 

  111. Dan I, Watanabe NM, Kusumi A . The Ste20 group kinases as regulators of MAP kinase cascades. Trends Cell Biol 2001; 11: 220–230.

    CAS  PubMed  Google Scholar 

  112. Lin JL, Chen HC, Fang HI, Robinson D, Kung HJ, Shih HM . MST4, a new Ste20-related kinase that mediates cell growth and transformation via modulating ERK pathway. Oncogene 2001; 20: 6559–6569.

    CAS  PubMed  Google Scholar 

  113. Lin ZH, Wang L, Zhang JB, Liu Y, Li XQ, Guo L et al. MST4 promotes hepatocellular carcinoma epithelial-mesenchymal transition and metastasis via activation of the p-ERK pathway. Int J Oncol 2014; 45: 629–640.

    CAS  PubMed  Google Scholar 

  114. Xiong W, Knox AJ, Xu M, Kiseljak-Vassiliades K, Colgan SP, Brodsky KS et al. Mammalian Ste20-like kinase 4 promotes pituitary cell proliferation and survival under hypoxia. Mol Endocrinol 2015; 29: 460–472.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Schmitt DC, Madeira da Silva L, Zhang W, Liu Z, Arora R, Lim S et al. ErbB2-intronic MicroRNA-4728: a novel tumor suppressor and antagonist of oncogenic MAPK signaling. Cell Death Dis 2015; 6: e1742.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Chen CB, Ng JK, Choo PH, Wu W, Porter AG . Mammalian sterile 20-like kinase 3 (MST3) mediates oxidative-stress-induced cell death by modulating JNK activation. Biosci Rep 2009; 29: 405–415.

    CAS  PubMed  Google Scholar 

  117. Chen HW, Marinissen MJ, Oh SW, Chen X, Melnick M, Perrimon N et al. CKA, a novel multidomain protein, regulates the JUN N-terminal kinase signal transduction pathway in Drosophila. Mol Cell Biol 2002; 22: 1792–1803.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Ashton-Beaucage D, Udell CM, Gendron P, Sahmi M, Lefrancois M, Baril C et al. A functional screen reveals an extensive layer of transcriptional and splicing control underlying RAS/MAPK signaling in Drosophila. PLoS Biol 2014; 12: e1001809.

    PubMed  PubMed Central  Google Scholar 

  119. Ma X, Wang X, Gao X, Wang L, Lu Y, Gao P et al. Identification of five human novel genes associated with cell proliferation by cell-based screening from an expressed cDNA ORF library. Life Sci 2007; 81: 1141–1151.

    CAS  PubMed  Google Scholar 

  120. Losel R, Wehling M . Nongenomic actions of steroid hormones. Nat Rev Mol Cell Biol 2003; 4: 46–56.

    PubMed  Google Scholar 

  121. Bernelot Moens SJ, Schnitzler GR, Nickerson M, Guo H, Ueda K, Lu Q et al. Rapid estrogen receptor signaling is essential for the protective effects of estrogen against vascular injury. Circulation 2012; 126: 1993–2004.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Coutinho P, Vega C, Pojoga LH, Rivera A, Prado GN, Yao TM et al. Aldosterone's rapid, nongenomic effects are mediated by striatin: a modulator of aldosterone's effect on estrogen action. Endocrinology 2014; 155: 2233–2243.

    PubMed  PubMed Central  Google Scholar 

  123. Pojoga LH, Coutinho P, Rivera A, Yao TM, Maldonado ER, Youte R et al. Activation of the mineralocorticoid receptor increases striatin levels. Am J Hypertens 2012; 25: 243–249.

    CAS  PubMed  Google Scholar 

  124. Fletcher DA, Mullins RD . Cell mechanics and the cytoskeleton. Nature 2010; 463: 485–492.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Kazmierczak-Baranska J, Peczek L, Przygodzka P, Cieslak MJ . Downregulation of striatin leads to hyperphosphorylation of MAP2, induces depolymerization of microtubules and inhibits proliferation of HEK293T cells. FEBS Lett 2015; 589: 222–230.

    CAS  PubMed  Google Scholar 

  126. Shih PY, Lee SP, Chen YK, Hsueh YP . Cortactin-binding protein 2 increases microtubule stability and regulates dendritic arborization. J Cell Sci 2014; 127: 3521–3534.

    CAS  PubMed  Google Scholar 

  127. Chen YK, Hsueh YP . Cortactin-binding protein 2 modulates the mobility of cortactin and regulates dendritic spine formation and maintenance. J Neurosci 2012; 32: 1043–1055.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Hashimoto S, Hirose M, Hashimoto A, Morishige M, Yamada A, Hosaka H et al. Targeting AMAP1 and cortactin binding bearing an atypical src homology 3/proline interface for prevention of breast cancer invasion and metastasis. Proc Natl Acad Sci USA 2006; 103: 7036–7041.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Fehon RG, McClatchey AI, Bretscher A . Organizing the cell cortex: the role of ERM proteins. Nat Rev Mol Cell Biol 2010; 11: 276–287.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Crawley SW, Mooseker MS, Tyska MJ . Shaping the intestinal brush border. J Cell Biol 2014; 207: 441–451.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Fidalgo M, Guerrero A, Fraile M, Iglesias C, Pombo CM, Zalvide J . Adaptor protein cerebral cavernous malformation 3 (CCM3) mediates phosphorylation of the cytoskeletal proteins ezrin/radixin/moesin by mammalian Ste20-4 to protect cells from oxidative stress. J Biol Chem 2012; 287: 11556–11565.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Zheng X, Xu C, Di Lorenzo A, Kleaveland B, Zou Z, Seiler C et al. CCM3 signaling through sterile 20-like kinases plays an essential role during zebrafish cardiovascular development and cerebral cavernous malformations. J Clin Invest 2010; 120: 2795–2804.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Frost A, Elgort MG, Brandman O, Ives C, Collins SR, Miller-Vedam L et al. Functional repurposing revealed by comparing S. pombe and S. cerevisiae genetic interactions. Cell 2012; 149: 1339–1352.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Rorth P . Collective cell migration. Annu Rev Cell Dev Biol 2009; 25: 407–429.

    CAS  PubMed  Google Scholar 

  135. Blanchoin L, Boujemaa-Paterski R, Sykes C, Plastino J . Actin dynamics, architecture, and mechanics in cell motility. Physiol Rev 2014; 94: 235–263.

    CAS  PubMed  Google Scholar 

  136. Ridley AJ . Life at the leading edge. Cell 2011; 145: 1012–1022.

    CAS  PubMed  Google Scholar 

  137. Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR . Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 2009; 10: 778–790.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Madsen CD, Hooper S, Tozluoglu M, Bruckbauer A, Fletcher G, Erler JT et al. STRIPAK components determine mode of cancer cell migration and metastasis. Nat Cell Biol 2015; 17: 68–80.

    CAS  PubMed  Google Scholar 

  139. Hyodo T, Ito S, Hasegawa H, Asano E, Maeda M, Urano T et al. Misshapen-like kinase 1 (MINK1) is a novel component of striatin-interacting phosphatase and kinase (STRIPAK) and is required for the completion of cytokinesis. J Biol Chem 2012; 287: 25019–25029.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Preisinger C, Short B, De Corte V, Bruyneel E, Haas A, Kopajtich R et al. YSK1 is activated by the Golgi matrix protein GM130 and plays a role in cell migration through its substrate 14-3-3zeta. J Cell Biol 2004; 164: 1009–1020.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Andreazza S, Bouleau S, Martin B, Lamouroux A, Ponien P, Papin C et al. Daytime CLOCK dephosphorylation is controlled by STRIPAK complexes in Drosophila. Cell Rep 2015; 11: 1266–1279.

    CAS  PubMed  Google Scholar 

  142. Lant B, Yu B, Goudreault M, Holmyard D, Knight JD, Xu P et al. CCM-3/STRIPAK promotes seamless tube extension through endocytic recycling. Nat Commun 2015; 6: 6449.

    CAS  PubMed  Google Scholar 

  143. Record CJ, Chaikuad A, Rellos P, Das S, Pike AC, Fedorov O et al. Structural comparison of human mammalian ste20-like kinases. PLoS One 2010; 5: e11905.

    PubMed  PubMed Central  Google Scholar 

  144. Henderson JL, Kormos BL, Hayward MM, Coffman KJ, Jasti J, Kurumbail RG et al. Discovery and preclinical profiling of 3-[4-(morpholin-4-yl)-7H-pyrrolo[2,3-d]pyrimidin-5-yl]benzonitrile (PF-06447475), a highly potent, selective, brain penetrant, and in vivo active LRRK2 kinase inhibitor. J Med Chem 2015; 58: 419–432.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the 973 Program of the Ministry of Science and Technology of China (2012CB910204), the National Natural Science Foundation of China (31270808, 31300734, 31470736, 31470868, 91442125, 91542125), the Science and Technology Commission of Shanghai Municipality (13ZR1446400) and the ‘Cross and Cooperation in Science and Technology Innovation Team’ project of the Chinese Academy of Sciences, and the Knowledge Innovation Program of Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (2014KIP202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z Zhou.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Z., Jiao, S. & Zhou, Z. STRIPAK complexes in cell signaling and cancer. Oncogene 35, 4549–4557 (2016). https://doi.org/10.1038/onc.2016.9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.9

This article is cited by

Search

Quick links