Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

CGI-99 promotes breast cancer metastasis via autocrine interleukin-6 signaling

Abstract

Metastatic relapse remains largely incurable and a major challenge of clinical management in breast cancer, but the underlying mechanisms are poorly understood. Herein, we report that CGI-99 is overexpressed in breast cancer tissues from patients with metastatic recurrence within 5 years. High CGI-99 significantly predicts poorer 5-year metastasis-free patient survival. We find that CGI-99 increases breast cancer stem cell properties, and potentiates efficient tumor lung colonization and outgrowth in vivo. Furthermore, we demonstrate that CGI-99 activates the autocrine interleukin-6 (IL-6)/STAT3 signaling by increasing the accumulation and activity of RNA polymerase II and p300 cofactor at the proximal promoter of IL-6. Importantly, delivery of the IL-6-receptor humanized monoclonal antibody tocilizumab robustly abrogates CGI-99-induced metastasis in vivo. Finally, we find that high levels of CGI-99 are significantly correlated with STAT3 hyperactivation in breast cancer patients. These findings reveal a potential mechanism for constitutive activation of autocrine IL-6/STAT3 signaling and may suggest a novel target for clinical intervention in breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Berry DA, Cronin KA, Plevritis SK, Fryback DG, Clarke L, Zelen M et al. Effect of screening and adjuvant therapy on mortality from breast cancer. N Engl J Med 2005; 353: 1784–1792.

    Article  CAS  PubMed  Google Scholar 

  2. Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 2009; 361: 123–134.

    Article  CAS  PubMed  Google Scholar 

  3. Liu S, Wicha MS . Targeting breast cancer stem cells. J Clin Oncol 2010; 28: 4006–4012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Taga T, Hibi M, Hirata Y, Yamasaki K, Yasukawa K, Matsuda T et al. Interleukin-6 triggers the association of its receptor with a possible signal transducer, gp130. Cell 1989; 58: 573–581.

    Article  CAS  PubMed  Google Scholar 

  5. Yu H, Pardoll D, Jove R . STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 2009; 9: 798–809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yu H, Lee H, Herrmann A, Buettner R, Jove R . Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer 2014; 14: 736–746.

    Article  CAS  PubMed  Google Scholar 

  7. Marotta LL, Almendro V, Marusyk A, Shipitsin M, Schemme J, Walker SR et al. The JAK2/STAT3 signaling pathway is required for growth of CD44(+)CD24(-) stem cell-like breast cancer cells in human tumors. J Clin Invest 2011; 121: 2723–2735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Guryanova OA, Wu Q, Cheng L, Lathia JD, Huang Z, Yang J et al. Nonreceptor tyrosine kinase BMX maintains self-renewal and tumorigenic potential of glioblastoma stem cells by activating STAT3. Cancer Cell 2011; 19: 498–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. He G, Dhar D, Nakagawa H, Font-Burgada J, Ogata H, Jiang Y et al. Identification of liver cancer progenitors whose malignant progression depends on autocrine IL-6 signaling. Cell 2013; 155: 384–396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang GJ, Adachi I . Serum interleukin-6 levels correlate to tumor progression and prognosis in metastatic breast carcinoma. Anticancer Res 1999; 19: 1427–1432.

    CAS  PubMed  Google Scholar 

  11. Trikha M, Corringham R, Klein B, Rossi JF . Targeted anti-interleukin-6 monoclonal antibody therapy for cancer: a review of the rationale and clinical evidence. Clin Cancer Res 2003; 9: 4653–4665.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Conze D, Weiss L, Regen PS, Bhushan A, Weaver D, Johnson P et al. Autocrine production of interleukin 6 causes multidrug resistance in breast cancer cells. Cancer Res 2001; 61: 8851–8858.

    CAS  PubMed  Google Scholar 

  13. Gao SP, Mark KG, Leslie K, Pao W, Motoi N, Gerald WL et al. Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. J Clin Invest 2007; 117: 3846–3856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sansone P, Storci G, Tavolari S, Guarnieri T, Giovannini C, Taffurelli M et al. IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Invest 2007; 117: 3988–4002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Deng J, Liu Y, Lee H, Herrmann A, Zhang W, Zhang C et al. S1PR1-STAT3 signaling is crucial for myeloid cell colonization at future metastatic sites. Cancer Cell 2012; 21: 642–654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Voorhees PM, Chen Q, Kuhn DJ, Small GW, Hunsucker SA, Strader JS et al. Inhibition of interleukin-6 signaling with CNTO 328 enhances the activity of bortezomib in preclinical models of multiple myeloma. Clin Cancer Res 2007; 13: 6469–6478.

    Article  CAS  PubMed  Google Scholar 

  17. Voorhees PM, Chen Q, Small GW, Kuhn DJ, Hunsucker SA, Nemeth JA et al. Targeted inhibition of interleukin-6 with CNTO 328 sensitizes pre-clinical models of multiple myeloma to dexamethasone-mediated cell death. Br J Haematol 2009; 145: 481–490.

    Article  CAS  PubMed  Google Scholar 

  18. Song L, Rawal B, Nemeth JA, Haura EB . JAK1 activates STAT3 activity in non-small-cell lung cancer cells and IL-6 neutralizing antibodies can suppress JAK1-STAT3 signaling. Mol Cancer Ther 2011; 10: 481–494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kroon P, Berry PA, Stower MJ, Rodrigues G, Mann VM, Simms M et al. JAK-STAT blockade inhibits tumor initiation and clonogenic recovery of prostate cancer stem-like cells. Cancer Res 2013; 73: 5288–5298.

    Article  CAS  PubMed  Google Scholar 

  20. Coward J, Kulbe H, Chakravarty P, Leader D, Vassileva V, Leinster DA et al. Interleukin-6 as a therapeutic target in human ovarian cancer. Clin Cancer Res 2011; 17: 6083–6096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dijkgraaf EM, Santegoets SJ, Reyners AK, Goedemans R, Wouters MC, Kenter GG et al. A phase I trial combining carboplatin/doxorubicin with tocilizumab, an anti-IL-6R monoclonal antibody, and interferon-alpha2b in patients with recurrent epithelial ovarian cancer. Ann Oncol 2015; 26: 2141–2149.

    Article  CAS  PubMed  Google Scholar 

  22. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 2014; 371: 1507–1517.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ando K, Takahashi F, Kato M, Kaneko N, Doi T, Ohe Y et al. Tocilizumab, a proposed therapy for the cachexia of Interleukin6-expressing lung cancer. PLoS One 2014; 9: e102436.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lai CH, Chou CY, Ch'ang LY, Liu CS, Lin W . Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. Genome Res 2000; 10: 703–713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Perez-Gonzalez A, Rodriguez A, Huarte M, Salanueva IJ, Nieto A . hCLE/CGI-99, a human protein that interacts with the influenza virus polymerase, is a mRNA transcription modulator. J Mol Biol 2006; 362: 887–900.

    Article  CAS  PubMed  Google Scholar 

  26. Lee JW, Liao PC, Young KC, Chang CL, Chen SS, Chang TT et al. Identification of hnRNPH1, NF45, and C14orf166 as novel host interacting partners of the mature hepatitis C virus core protein. J Proteome Res 2011; 10: 4522–4534.

    Article  CAS  PubMed  Google Scholar 

  27. Perez-Gonzalez A, Pazo A, Navajas R, Ciordia S, Rodriguez-Frandsen A, Nieto A . hCLE/C14orf166 associates with DDX1-HSPC117-FAM98B in a novel transcription-dependent shuttling RNA-transporting complex. PLoS One 2014; 9: e90957.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rodriguez-Frandsen A, de Lucas S, Perez-Gonzalez A, Perez-Cidoncha M, Roldan-Gomendio A, Pazo A et al. hCLE/C14orf166, a cellular protein required for viral replication, is incorporated into influenza virus particles. Sci Rep 2016; 6: 20744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huarte M, Sanz-Ezquerro JJ, Roncal F, Ortin J, Nieto AP . A subunit from influenza virus polymerase complex interacts with a cellular protein with homology to a family of transcriptional activators. J Virol 2001; 75: 8597–8604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Howng SL, Hsu HC, Cheng TS, Lee YL, Chang LK, Lu PJ et al. A novel ninein-interaction protein, CGI-99, blocks ninein phosphorylation by GSK3beta and is highly expressed in brain tumors. FEBS Lett 2004; 566: 162–168.

    Article  CAS  PubMed  Google Scholar 

  31. Guo J, Wang W, Liao P, Lou W, Ji Y, Zhang C et al. Identification of serum biomarkers for pancreatic adenocarcinoma by proteomic analysis. Cancer Sci 2009; 100: 2292–2301.

    Article  CAS  PubMed  Google Scholar 

  32. Cui Y, Wu J, Zong M, Song G, Jia Q, Jiang J et al. Proteomic profiling in pancreatic cancer with and without lymph node metastasis. Int J Cancer 2009; 124: 1614–1621.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang W, Ou J, Lei F, Hou T, Wu S, Niu C et al. C14ORF166 overexpression is associated with pelvic lymph node metastasis and poor prognosis in uterine cervical cancer. Tumour Biol 2016; 37: 369–379.

    Article  CAS  PubMed  Google Scholar 

  34. Yang L, Li F, Lei F, Wang Y, Wu S, Song L et al. Overexpression of chromosome 14 open reading frame 166 correlates with disease progression and poorer prognosis in human NPC. Tumour Biol 2015; 36: 7977–7986.

    Article  CAS  PubMed  Google Scholar 

  35. Cheang TY, Zhou HY, Chen W, Zhang B, Liu L, Yang J et al. C14orf166 overexpression correlates with tumor progression and poor prognosis of breast cancer. J Transl Med 2016; 14: 54.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat 2010; 123: 725–731.

    Article  PubMed  Google Scholar 

  37. Larive RM, Moriggi G, Menacho-Marquez M, Canamero M, de Alava E, Alarcon B et al. Contribution of the R-Ras2 GTP-binding protein to primary breast tumorigenesis and late-stage metastatic disease. Nat Commun 2014; 5: 3881.

    Article  CAS  PubMed  Google Scholar 

  38. Chambers AF, Groom AC, MacDonald IC . Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2002; 2: 563–572.

    Article  CAS  PubMed  Google Scholar 

  39. Blobel GA . CREB-binding protein and p300: molecular integrators of hematopoietic transcription. Blood 2000; 95: 745–755.

    CAS  PubMed  Google Scholar 

  40. Jeong EG, Kim MS, Nam HK, Min CK, Lee S, Chung YJ et al. Somatic mutations of JAK1 and JAK3 in acute leukemias and solid cancers. Clin Cancer Res 2008; 14: 3716–3721.

    Article  CAS  PubMed  Google Scholar 

  41. Vainchenker W, Constantinescu SN . JAK/STAT signaling in hematological malignancies. Oncogene 2013; 32: 2601–2613.

    Article  CAS  PubMed  Google Scholar 

  42. Grivennikov S, Karin M . Autocrine IL-6 signaling: a key event in tumorigenesis? Cancer Cell 2008; 13: 7–9.

    Article  CAS  PubMed  Google Scholar 

  43. Hodge DR, Hurt EM, Farrar WL . The role of IL-6 and STAT3 in inflammation and cancer. Eur J Cancer 2005; 41: 2502–2512.

    Article  CAS  PubMed  Google Scholar 

  44. Yokoe T, Iino Y, Takei H, Horiguchi J, Koibuchi Y, Maemura M et al. Changes of cytokines and thyroid function in patients with recurrent breast cancer. Anticancer Res 1997; 17: 695–699.

    CAS  PubMed  Google Scholar 

  45. Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ . Efficient tumour formation by single human melanoma cells. Nature 2008; 456: 593–598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ishizawa K, Rasheed ZA, Karisch R, Wang Q, Kowalski J, Susky E et al. Tumor-initiating cells are rare in many human tumors. Cell Stem Cell 2010; 7: 279–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Libermann TA, Baltimore D . Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol Cell Biol 1990; 10: 2327–2334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD et al. Genes that mediate breast cancer metastasis to lung. Nature 2005; 436: 518–524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of China grant (no. 973-2014CB910604); Natural Science Foundation of China (no. 81472546, 81672854, 81530082, 81272198, 81572687, 81325013, 91529301 and 81572688), the Science and Technology of Guangdong Province (no. 2016A030308002, 2014A030313008 and 2014A030313220), Science and Technology Program of Guangzhou (no. 15020077) and Guangdong Esophageal Cancer Institute (no. M201409).

Author contributions

CL, YJ and WL carried out most of the experimental work. CL and YJ conducted enzyme-linked immunosorbent assay analysis and animal experiments. WL and LY conducted immunohistochemistry analysis and cell experiments. YP, XZ and BW conducted western blot analysis. YC conducted PCR. ZX, XW and SW conducted the molecular cloning and luciferase assay. JL, XW and LS supervised the project and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to X Wang or L Song.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, C., Liao, W., Jian, Y. et al. CGI-99 promotes breast cancer metastasis via autocrine interleukin-6 signaling. Oncogene 36, 3695–3705 (2017). https://doi.org/10.1038/onc.2016.525

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.525

This article is cited by

Search

Quick links