Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Ras–Erk signaling induces phosphorylation of human TLE1 and downregulates its repressor function

Abstract

Signaling mediated by the Ras-extracellular signal-regulated kinase (Erk) pathway often leads to the phosphorylation of transcriptional regulators, thereby modulating their activity and causing concerted changes in gene expression. In Drosophila, the induction of multiple Ras–Erk pathway target genes depends on prior phosphorylation of the general co-repressor Groucho, a modification that downregulates its repressive function. Here, we show that TLE1, one of the four human Groucho orthologs, is similarly phosphorylated in response to Ras–Erk pathway activation, and that this modification attenuates its capacity to repress transcription. Specifically, unphosphorylated TLE1 dominantly suppresses the induction of Ras–Erk pathway target genes in cultured human cells, and the expression of an unphosphorylatable TLE1 derivative causes severe phenotypes in a transgenic Drosophila model system, whereas a phosphomimetic variant of TLE1 exerts only negligible effects. We present data indicating that TLE1 is rapidly excluded from the nucleus following epidermal growth factor receptor pathway activation, an effect that likely accounts for its inability to mediate effective repression under such conditions. Significantly, we find that unphosphorylated TLE1 blocks oncogenic phenotypes induced by mutated H-Ras in human mammary cells, both in vitro and following their implantation in mice. Collectively, our data strongly indicate that phosphorylation of TLE family members and the consequent downregulation of their repressor function is a key conserved step in the transcriptional responses to Ras–Erk signaling, and possibly a critical event in the tumorigenic effects caused by excessive Ras–Erk pathway activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. McKay MM, Morrison DK . Integrating signals from RTKs to ERK/MAPK. Oncogene 2007; 26: 3113–3121.

    Article  CAS  Google Scholar 

  2. Whitmarsh AJ . Regulation of gene transcription by mitogen-activated protein kinase signaling pathways. Biochim Biophys Acta 2007; 1773: 1285–1298.

    Article  CAS  Google Scholar 

  3. Lemmon MA, Schlessinger J . Cell signaling by receptor tyrosine kinases. Cell 2010; 141: 1117–1134.

    Article  CAS  Google Scholar 

  4. Yang SH, Sharrocks AD, Whitmarsh AJ . MAP kinase signalling cascades and transcriptional regulation. Gene 2013; 513: 1–13.

    Article  CAS  Google Scholar 

  5. Casaletto JB, McClatchey AI . Spatial regulation of receptor tyrosine kinases in development and cancer. Nat Rev Cancer 2012; 12: 387–400.

    Article  CAS  Google Scholar 

  6. Bezniakow N, Gos M, Obersztyn E . The RASopathies as an example of RAS/MAPK pathway disturbances - clinical presentation and molecular pathogenesis of selected syndromes. Dev Period Med 2014; 18: 285–296.

    PubMed  Google Scholar 

  7. Plotnikov A, Zehorai E, Procaccia S, Seger R . The MAPK cascades: signaling components, nuclear roles and mechanisms of nuclear translocation. Biochim Biophys Acta 2011; 1813: 1619–1633.

    Article  CAS  Google Scholar 

  8. Hasson P, Egoz N, Winkler C, Volohonsky G, Jia S, Dinur T et al. EGFR signaling attenuates Groucho-dependent repression to antagonize Notch transcriptional output. Nat Genet 2005; 37: 101–105.

    Article  CAS  Google Scholar 

  9. Cinnamon E, Helman A, Ben-Haroush Schyr R, Orian A, Jimenez G, Paroush Z . Multiple RTK pathways downregulate Groucho-mediated repression in Drosophila embryogenesis. Development 2008; 135: 829–837.

    Article  CAS  Google Scholar 

  10. Helman A, Cinnamon E, Mezuman S, Hayouka Z, Von Ohlen T, Orian A et al. Phosphorylation of Groucho mediates RTK feedback inhibition and prolonged pathway target gene expression. Curr Biol 2011; 21: 1102–1110.

    Article  CAS  Google Scholar 

  11. Jennings BH, Ish-Horowicz D . The Groucho/TLE/Grg family of transcriptional co-repressors. Genome Biol 2008; 9: 205.

    Article  Google Scholar 

  12. Cinnamon E, Paroush Z . Context-dependent regulation of Groucho/TLE-mediated repression. Curr Opin Genet Dev 2008; 18: 435–440.

    Article  CAS  Google Scholar 

  13. Turki-Judeh W, Courey AJ . Groucho: a corepressor with instructive roles in development. Curr Top Dev Biol 2012; 98: 65–96.

    Article  CAS  Google Scholar 

  14. Gasperowicz M, Otto F . Mammalian Groucho homologs: redundancy or specificity? J Cell Biochem 2005; 95: 670–687.

    Article  CAS  Google Scholar 

  15. Buscarlet M, Stifani S . The 'Marx' of Groucho on development and disease. Trends Cell Biol 2007; 17: 353–361.

    Article  CAS  Google Scholar 

  16. Agarwal M, Kumar P, Mathew SJ . The Groucho/transducin-like enhancer of split protein family in animal development. IUBMB Life 2015; 67: 472–481.

    Article  CAS  Google Scholar 

  17. Beagle B, Johnson GV . AES/GRG5: more than just a dominant-negative TLE/GRG family member. Dev Dyn 2010; 239: 2795–2805.

    Article  CAS  Google Scholar 

  18. Kwong PN, Chambers M, Vashisht AA, Turki-Judeh W, Yau TY, Wohlschlegel JA et al. The Central region of the Drosophila co-repressor Groucho as a regulatory hub. J Biol Chem 2015; 290: 30119–30130.

    Article  CAS  Google Scholar 

  19. Amit I, Citri A, Shay T, Lu Y, Katz M, Zhang F et al. A module of negative feedback regulators defines growth factor signaling. Nat Genet 2007; 39: 503–512.

    Article  CAS  Google Scholar 

  20. Bischof J, Maeda RK, Hediger M, Karch F, Basler K . An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc Natl Acad Sci USA 2007; 104: 3312–3317.

    Article  CAS  Google Scholar 

  21. Maimon A, Mogilevsky M, Shilo A, Golan-Gerstl R, Obiedat A, Ben-Hur V et al. Mnk2 alternative splicing modulates the p38-MAPK pathway and impacts Ras-induced transformation. Cell Rep 2014; 7: 501–513.

    Article  CAS  Google Scholar 

  22. Debnath J, Muthuswamy SK, Brugge JS . Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 2003; 30: 256–268.

    Article  CAS  Google Scholar 

  23. Ben-Hur V, Denichenko P, Siegfried Z, Maimon A, Krainer A, Davidson B et al. S6K1 alternative splicing modulates its oncogenic activity and regulates mTORC1. Cell Rep 2013; 3: 103–115.

    Article  CAS  Google Scholar 

  24. Corkery B, Crown J, Clynes M, O'Donovan N . Epidermal growth factor receptor as a potential therapeutic target in triple-negative breast cancer. Ann Oncol 2009; 20: 862–867.

    Article  CAS  Google Scholar 

  25. Davidson NE, Gelmann EP, Lippman ME, Dickson RB . Epidermal growth factor receptor gene expression in estrogen receptor-positive and negative human breast cancer cell lines. Mol Endocrinol 1987; 1: 216–223.

    Article  CAS  Google Scholar 

  26. Li Z, Zhao J, Tikhanovich I, Kuravi S, Helzberg J, Dorko K et al. Serine 574 phosphorylation alters transcriptional programming of FOXO3 by selectively enhancing apoptotic gene expression. Cell Death Differ 2016; 23: 583–595.

    Article  CAS  Google Scholar 

  27. Lee S, Shuman JD, Guszczynski T, Sakchaisri K, Sebastian T, Copeland TD et al. RSK-mediated phosphorylation in the C/EBP{beta} leucine zipper regulates DNA binding, dimerization, and growth arrest activity. Mol Cell Biol 2010; 30: 2621–2635.

    Article  CAS  Google Scholar 

  28. Delidakis C, Preiss A, Hartley DA, Artavanis-Tsakonas S . Two genetically and molecularly distinct functions involved in early neurogenesis reside within the enhancer of split locus of Drosophila melanogaster. Genetics 1991; 129: 803–823.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Goldstein RE, Cook O, Dinur T, Pisante A, Karandikar UC, Bidwai A et al. An eh1-like motif in odd-skipped mediates recruitment of Groucho and repression in vivo. Mol Cell Biol 2005; 25: 10711–10720.

    Article  CAS  Google Scholar 

  30. Hasson P, Muller B, Basler K, Paroush Z . Brinker requires two corepressors for maximal and versatile repression in Dpp signalling. EMBO J 2001; 20: 5725–5736.

    Article  CAS  Google Scholar 

  31. Paroush Z, Wainwright SM, Ish-Horowicz D . Torso signalling regulates terminal patterning in Drosophila by antagonising Groucho-mediated repression. Development 1997; 124: 3827–3834.

    CAS  PubMed  Google Scholar 

  32. Helman A, Lim B, Andreu MJ, Kim Y, Shestkin T, Lu H et al. RTK signaling modulates the Dorsal gradient. Development 2012; 139: 3032–3039.

    Article  CAS  Google Scholar 

  33. Johnston MJ, Bar-Cohen S, Paroush Z, Nystul TG . Phosphorylated Groucho delays differentiation in the follicle stem cell lineage by providing a molecular memory of EGFR signaling in the niche. Development 2016; 143: 4631–4642.

    Article  CAS  Google Scholar 

  34. Levanon D, Goldstein RE, Bernstein Y, Tang H, Goldenberg D, Stifani S et al. Transcriptional repression by AML1 and LEF-1 is mediated by the TLE/Groucho corepressors. Proc Natl Acad Sci USA 1998; 95: 11590–11595.

    Article  CAS  Google Scholar 

  35. Dayyani F, Wang J, Yeh JR, Ahn EY, Tobey E, Zhang DE et al. Loss of TLE1 and TLE4 from the del(9q) commonly deleted region in AML cooperates with AML1-ETO to affect myeloid cell proliferation and survival. Blood 2008; 111: 4338–4347.

    Article  CAS  Google Scholar 

  36. Mrozek K, Marcucci G, Paschka P, Bloomfield CD . Advances in molecular genetics and treatment of core-binding factor acute myeloid leukemia. Curr Opin Oncol 2008; 20: 711–718.

    Article  CAS  Google Scholar 

  37. van Noort M, Clevers H . TCF transcription factors, mediators of Wnt-signaling in development and cancer. Dev Biol 2002; 244: 1–8.

    Article  CAS  Google Scholar 

  38. Roose J, Molenaar M, Peterson J, Hurenkamp J, Brantjes H, Moerer P et al. The Xenopus Wnt effector XTcf-3 interacts with Groucho-related transcriptional repressors. Nature 1998; 395: 608–612.

    Article  CAS  Google Scholar 

  39. Barker N, Morin PJ, Clevers H . The Yin-Yang of TCF/beta-catenin signaling. Adv Cancer Res 2000; 77: 1–24.

    CAS  PubMed  Google Scholar 

  40. Brantjes H, Roose J, van De Wetering M, Clevers H . All Tcf HMG box transcription factors interact with Groucho-related co-repressors. Nucleic Acids Res 2001; 29: 1410–1419.

    Article  CAS  Google Scholar 

  41. Daniels DL, Weis WI . Beta-catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt-mediated transcription activation. Nat Struct Mol Biol 2005; 12: 364–371.

    Article  CAS  Google Scholar 

  42. Lien WH, Polak L, Lin M, Lay K, Zheng D, Fuchs E . In vivo transcriptional governance of hair follicle stem cells by canonical Wnt regulators. Nat Cell Biol 2014; 16: 179–190.

    Article  CAS  Google Scholar 

  43. McCurrach ME, Lowe SW . Methods for studying pro- and antiapoptotic genes in nonimmortal cells. Methods Cell Biol 2001; 66: 197–227.

    Article  CAS  Google Scholar 

  44. Kim Y, Coppey M, Grossman R, Ajuria L, Jiménez G, Paroush Z et al. MAPK substrate competition integrates patterning signals in the Drosophila embryo. Curr Biol 2010; 20: 446–451.

    Article  CAS  Google Scholar 

  45. Yogev O, Saadon K, Anzi S, Inoue K, Shaulian E . DNA damage-dependent translocation of B23 and p19 ARF is regulated by the Jun N-terminal kinase pathway. Cancer Res 2008; 68: 1398–1406.

    Article  CAS  Google Scholar 

  46. Karni R, de Stanchina E, Lowe SW, Sinha R, Mu D, Krainer AR . The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat Struct Mol Biol 2007; 14: 185–193.

    Article  CAS  Google Scholar 

  47. Hasson P, Paroush Z . Crosstalk between the EGFR and other signalling pathways at the level of the global transcriptional corepressor Groucho/TLE. Br J Cancer 2006; 94: 771–775.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of our laboratory for continued help and encouragement during this project; David Engelberg, Shulamit Katzav, Oded Meyuhas, Joel Yisraeli and, particularly, Gerardo Jiménez for their insightful comments on the manuscript; Yosef Yarden and Stefano Stifani for providing us with DNA constructs and reagents; Konstantin Kogan, Vered Levin-Salomon and David Engelberg for their assistance with the Erk2 in vitro kinase assays and for contributing recombinant activated Erk2; Ahmad Mreisat for technical help; and Amir Orian for hosting TZ in his laboratory for some of her experiments. Work was supported by grants from the Israel Cancer Research Fund (Project Grant), Israel Science Foundation (Center of Excellence 1772/13 and 1552/16), and the Jan M and Eugenia Król Charitable Foundation to ZP; and by the Israel Cancer Association to HN. TK received a Doctoral Fellowship from the Tsipora and Moshe Levin Foundation. DK is a recipient of a Carole Annette Stevens-Walvish Postdoctoral Fellowship in Cancer Research, a Lady Davis Postdoctoral Fellowship and an Israel Cancer Research Fund Booster Fellowship. ZP is an incumbent of the Lady Davis Professorship in Experimental Medicine and Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z Paroush.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahavi, T., Maimon, A., Kushnir, T. et al. Ras–Erk signaling induces phosphorylation of human TLE1 and downregulates its repressor function. Oncogene 36, 3729–3739 (2017). https://doi.org/10.1038/onc.2016.517

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.517

This article is cited by

Search

Quick links