Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

The SigmaR1 chaperone drives breast and colorectal cancer cell migration by tuning SK3-dependent Ca2+ homeostasis

Abstract

The remodeling of calcium homeostasis contributes to the cancer hallmarks and the molecular mechanisms involved in calcium channel regulation in tumors remain to be characterized. Here, we report that SigmaR1, a stress-activated chaperone, is required to increase calcium influx by triggering the coupling between SK3, a Ca2+-activated K+ channel (KCNN3) and the voltage-independent calcium channel Orai1. We show that SigmaR1 physically binds SK3 in BC cells. Inhibition of SigmaR1 activity, either by molecular silencing or by the use of sigma ligand (igmesine), decreased SK3 current and Ca2+ entry in breast cancer (BC) and colorectal cancer (CRC) cells. Interestingly, SigmaR1 inhibition diminished SK3 and/or Orai1 levels in lipid nanodomains isolated from BC cells. Analyses of tissue microarray from CRC patients showed higher SigmaR1 expression levels in cancer samples and a correlation with tumor grade. Moreover, the exploration of a cohort of 4937 BC patients indicated that high expression of SigmaR1 and Orai1 channels was significantly correlated to a lower overall survival. As the SK3/Orai1 tandem drives invasive process in CRC and bone metastasis progression in BC, our results may inaugurate innovative therapeutic approaches targeting SigmaR1 to control the remodeling of Ca2+ homeostasis in epithelial cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  PubMed  Google Scholar 

  2. Dubois C, Vanden Abeele F, Lehen'kyi V, Gkika D, Guarmit B, Lepage G et al. Remodeling of channel-forming ORAI proteins determines an oncogenic switch in prostate cancer. Cancer Cell 2014; 26: 19–32.

    Article  CAS  PubMed  Google Scholar 

  3. Prevarskaya N, Skryma R, Shuba Y . Ion channels and the hallmarks of cancer. Trends Mol Med 2010; 16: 107–121.

    Article  CAS  PubMed  Google Scholar 

  4. Chantome A, Potier-Cartereau M, Clarysse L, Fromont G, Marionneau-Lambot S, Gueguinou M et al. Pivotal role of the lipid Raft SK3-Orai1 complex in human cancer cell migration and bone metastases. Cancer Res 2013; 73: 4852–4861.

    Article  CAS  PubMed  Google Scholar 

  5. Hayashi T, Su TP . Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 2007; 131: 596–610.

    Article  CAS  PubMed  Google Scholar 

  6. Vollrath JT, Sechi A, Dreser A, Katona I, Wiemuth D, Vervoorts J et al. Loss of function of the ALS protein SigR1 leads to ER pathology associated with defective autophagy and lipid raft disturbances. Cell Death Dis 2014; 5: e1290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Prause J, Goswami A, Katona I, Roos A, Schnizler M, Bushuven E et al. Altered localization, abnormal modification and loss of function of Sigma receptor-1 in amyotrophic lateral sclerosis. Hum Mol Genet 2013; 22: 1581–1600.

    Article  CAS  PubMed  Google Scholar 

  8. Ruscher K, Shamloo M, Rickhag M, Ladunga I, Soriano L, Gisselsson L et al. The sigma-1 receptor enhances brain plasticity and functional recovery after experimental stroke. Brain 2011; 134 (Pt 3): 732–746.

    Article  PubMed  Google Scholar 

  9. Kourrich S, Hayashi T, Chuang JY, Tsai SY, Su TP, Bonci A . Dynamic interaction between sigma-1 receptor and Kv1.2 shapes neuronal and behavioral responses to cocaine. Cell 2013; 152: 236–247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kourrich S, Su TP, Fujimoto M, Bonci A . The sigma-1 receptor: roles in neuronal plasticity and disease. Trends Neurosci 2012; 35: 762–771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Crottes D, Guizouarn H, Martin P, Borgese F, Soriani O . The sigma-1 receptor: a regulator of cancer cell electrical plasticity? Front Physiol 2013; 4: 175; 37: 262–278.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Su TP, Su TC, Nakamura Y, Tsai SY . The Sigma-1 receptor as a pluripotent modulator in living systems. Trends Pharmacol Sci 2016; 37: 262–278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chu UB, Ruoho AE . Biochemical pharmacology of the Sigma-1 receptor. Mol Pharmacol 2016; 89: 142–153.

    Article  CAS  PubMed  Google Scholar 

  14. Crottes D, Rapetti-Mauss R, Alcaraz-Perez F, Tichet M, Gariano G, Martial S et al. SIGMAR1 regulates membrane electrical activity in response to extracellular matrix stimulation to drive cancer cell invasiveness. Cancer Res 2016; 76: 607–618.

    Article  CAS  PubMed  Google Scholar 

  15. Gueguinou M, Harnois T, Crottès D, Uguen A, Deliot N, Gambade A et al. The alkyl-lipid Ohmline modifies the anti-EGFR mAbs action through the control of calcium signaling and Akt. Oncotarget 2016; 7: 36168–36184.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Martina M, Turcotte ME, Halman S, Bergeron R . The sigma-1 receptor modulates NMDA receptor synaptic transmission and plasticity via SK channels in rat hippocampus. J Physiol 2007; 578 (Pt 1): 143–157.

    Article  CAS  PubMed  Google Scholar 

  17. Wu Z, Bowen WD . Role of sigma-1 receptor C-terminal segment in inositol 1,4,5-trisphosphate receptor activation: constitutive enhancement of calcium signaling in MCF-7 tumor cells. J Biol Chem 2008; 283: 28198–28215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hayashi T, Su TP . Regulating ankyrin dynamics: roles of sigma-1 receptors. Proc Natl Acad Sci USA 2001; 98: 491–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. bou-Lovergne A, Collado-Hilly M, Monnet FP, Koukoui O, Prigent S, Coquil JF et al. Investigation of the role of sigma1-receptors in inositol 1,4,5-trisphosphate dependent calcium signaling in hepatocytes. Cell Calcium 2011; 50: 62–72.

    Article  Google Scholar 

  20. Prevarskaya N, Ouadid-Ahidouch H, Skryma R, Shuba Y . Remodelling of Ca2+ transport in cancer: how it contributes to cancer hallmarks? Philos Trans R Soc Lond B Biol Sci 2014; 369: 20130097.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gueguinou M, Chantome A, Fromont G, Bougnoux P, Vandier C, Potier-Cartereau M . KCa and Ca(2+) channels: the complex thought. Biochim Biophys Acta 2014; 1843: 2322–2333.

    Article  CAS  PubMed  Google Scholar 

  22. Chantome A, Girault A, Potier M, Collin C, Vaudin P, Pages JC et al. KCa2.3 channel-dependent hyperpolarization increases melanoma cell motility. Exp Cell Res 2009; 315: 3620–3630.

    Article  CAS  PubMed  Google Scholar 

  23. Balasuriya D, D'Sa L, Talker R, Dupuis E, Maurin F, Martin P et al. A direct interaction between the sigma-1 receptor and the hERG voltage-gated K+ channel revealed by atomic force microscopy and homogeneous time-resolved fluorescence (HTRF(R)). J Biol Chem 2014; 289: 32353–32363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pal A, Hajipour AR, Fontanilla D, Ramachandran S, Chu UB, Mavlyutov T et al. Identification of regions of the sigma-1 receptor ligand binding site using a novel photoprobe. Mol Pharmacol 2007; 72: 921–933.

    Article  CAS  PubMed  Google Scholar 

  25. Hayashi T, Su TP . Sigma-1 receptors at galactosylceramide-enriched lipid microdomains regulate oligodendrocyte differentiation. Proc Natl Acad Sci USA 2004; 101: 14949–14954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hayashi T, Su TP . Cholesterol at the endoplasmic reticulum: roles of the sigma-1 receptor chaperone and implications thereof in human diseases. Subcell Biochem 2010; 51: 381–398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Balasuriya D, Stewart AP, Crottes D, Borgese F, Soriani O, Edwardson JM . The sigma-1 receptor binds to the Nav1.5 voltage-gated Na+ channel with 4-fold symmetry. J Biol Chem 2012; 287: 37021–37029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Srivats S, Balasuriya D, Pasche M, Vistal G, Edwardson JM, Taylor CW et al. Sigma1 receptors inhibit store-operated Ca2+ entry by attenuating coupling of STIM1 to Orai1. J Cell Biol 2016; 213: 65–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Moenner M, Pluquet O, Bouchecareilh M, Chevet E . Integrated endoplasmic reticulum stress responses in cancer. Cancer Res 2007; 67: 10631–10634.

    Article  CAS  PubMed  Google Scholar 

  30. Raphael M, Lehen'kyi V, Vandenberghe M, Beck B, Khalimonchyk S, Vanden Abeele F et al. TRPV6 calcium channel translocates to the plasma membrane via Orai1-mediated mechanism and controls cancer cell survival. Proc Natl Acad Sci USA 2014; 111: E3870–E3879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Roman FJ, Pascaud X, Martin B, Vauch D, Junien JL . JO 1784, a potent and selective ligand for rat and mouse brain sigma sites. J Pharm Pharmacol 1989; 42: 439–440.

    Article  Google Scholar 

  32. Soriani O, Vaudry H, Mei YA, Roman F, Cazin L . Sigma ligands stimulate the electrical activity of frog pituitary melanotrope cells through a G-protein-dependent inhibition of potassium conductances. J Pharmacol Exp Ther 1998; 286: 163–171.

    CAS  PubMed  Google Scholar 

  33. Renaudo A, L'Hoste S, Guizouarn H, Borgese F, Soriani O . Cancer cell cycle modulated by a functional coupling between sigma-1 receptors and Cl- channels. J Biol Chem 2007; 282: 2259–2267.

    Article  CAS  PubMed  Google Scholar 

  34. Clarysse L, Gueguinou M, Potier-Cartereau M, Vandecasteele G, Bougnoux P, Chevalier S et al. cAMP-PKA inhibition of SK3 channel reduced both Ca2+ entry and cancer cell migration by regulation of SK3-Orai1 complex. Pflugers Arch 2014; 466: 1921–1932.

    Article  CAS  PubMed  Google Scholar 

  35. Maurice T, Su TP . The pharmacology of sigma-1 receptors. Pharmacol Ther 2009; 124: 195–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Crottes D, Martial S, Rapetti-Mauss R, Pisani DF, Loriol C, Pellissier B et al. Sig1R protein regulates hERG channel expression through a post-translational mechanism in leukemic cells. J Biol Chem 2011; 286: 27947–27958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jezequel P, Campone M, Gouraud W, Guerin-Charbonnel C, Leux C, Ricolleau G et al. bc-GenExMiner: an easy-to-use online platform for gene prognostic analyses in breast cancer. Breast Cancer Res Treat 2012; 131: 765–775.

    Article  PubMed  Google Scholar 

  38. Kondratska K, Kondratskyi A, Yassine M, Lemonnier L, Lepage G, Morabito A et al. Orai1 and STIM1 mediate SOCE and contribute to apoptotic resistance of pancreatic adenocarcinoma. Biochim Biophys Acta 2014; 1843: 2263–2269.

    Article  CAS  PubMed  Google Scholar 

  39. Hayashi T . Sigma-1 receptor: the novel intracellular target of neuropsychotherapeutic drugs. J Pharmacol Sci 2015; 127: 2–5.

    Article  CAS  PubMed  Google Scholar 

  40. van Waarde A, Rybczynska AA, Ramakrishnan NK, Ishiwata K, Elsinga PH, Dierckx RA . Potential applications for sigma receptor ligands in cancer diagnosis and therapy. Biochim Biophys Acta 2014; 1848 (10 Pt B): 2703–2714.

    PubMed  Google Scholar 

  41. Girault A, Haelters JP, Potier-Cartereau M, Chantome A, Pinault M, Marionneau-Lambot S et al. New alkyl-lipid blockers of SK3 channels reduce cancer cell migration and occurrence of metastasis. Curr Cancer Drug Targets 2011; 11: 1111–1125.

    Article  CAS  PubMed  Google Scholar 

  42. Calaghan S, Kozera L, White E . Compartmentalisation of cAMP-dependent signalling by caveolae in the adult cardiac myocyte. J Mol Cell Cardiol 2008; 45: 88–92.

    Article  CAS  PubMed  Google Scholar 

  43. Uhlen M, Oksvold P, Fagerberg L, Lundberg E, Jonasson K, Forsberg M et al. Towards a knowledge-based Human Protein Atlas. Nat Biotechnol 2010; 28: 1248–1250.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was supported by Université Côte d'Azur, CNRS, La Ligue contre le Cancer, Region Centre (LIPIDS project of ARD2020-Biomédicaments), INSERM, Cancéropôle Grand Ouest, the association ‘CANCEN’ and Tours’ Hospital oncology association ‘ACORT’, Association Ti'Toine Normandie. DC is a doctoral fellow with CNRS, Région PACA and Fondation ARC. RR-M is a post-doctoral fellow of La Ligue contre le Cancer and Fondation de France. The microscopy was carried out in the Prism facility, ‘Plateforme Université Côte d'Azur, CNRS, Inserm, iBV, France. MG and LC are respectively doctoral fellows of Region Centre and Region Centre/INSERM. Local tumor tissue biobank BB-0033-00037 (‘CRB Santé/Tumorothèque de Brest’).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C Vandier or O Soriani.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gueguinou, M., Crottès, D., Chantôme, A. et al. The SigmaR1 chaperone drives breast and colorectal cancer cell migration by tuning SK3-dependent Ca2+ homeostasis. Oncogene 36, 3640–3647 (2017). https://doi.org/10.1038/onc.2016.501

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.501

This article is cited by

Search

Quick links