Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transamidase site-targeted agents alter the conformation of the transglutaminase cancer stem cell survival protein to reduce GTP binding activity and cancer stem cell survival

A Correction to this article was published on 03 March 2021

This article has been updated

Abstract

Type 2 transglutaminase (TG2) is an important cancer stem cell survival protein that exists in open and closed conformations. The major intracellular form is the closed conformation that functions as a GTP-binding GTPase and is required for cancer stem cell survival. However, at a finite rate, TG2 transitions to an open conformation that exposes the transamidase catalytic site involved in protein–protein crosslinking. The activities are mutually exclusive, as the closed conformation has GTP binding/GTPase activity, and the open conformation transamidase activity. We recently showed that GTP binding, but not transamidase activity, is required for TG2-dependent cancer stem cell invasion, migration and tumour formation. However, we were surprised that transamidase site-specific inhibitors reduce cancer stem cell survival. We now show that compounds NC9, VA4 and VA5, which react exclusively at the TG2 transamidase site, inhibit both transamidase and GTP-binding activities. Transamidase activity is inhibited by direct inhibitor binding at the transamidase site, and GTP binding is blocked because inhibitor interaction at the transamidase site locks the protein in the extended/open conformation to disorganize/inactivate the GTP binding/GTPase site. These findings suggest that transamidase site-specific inhibitors can inhibit GTP binding/signalling by driving a conformation change that disorganizes the TG2 GTP binding to reduce TG2-dependent signalling, and that drugs designed to target this site may be potent anti-cancer agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Change history

References

  1. Griffin M, Casadio R, Bergamini CM . Transglutaminases: nature’s biological glues. Biochem J 2002; 368: 377–396.

    Article  CAS  Google Scholar 

  2. Eckert RL, Kaartinen MT, Nurminskaya M, Belkin AM, Colak G, Johnson GV et al. Transglutaminase regulation of cell function. Physiol Rev 2014; 94: 383–417.

    Article  CAS  Google Scholar 

  3. Nakaoka H, Perez DM, Baek KJ, Das T, Husain A, Misono K et al. Gh: a GTP-binding protein with transglutaminase activity and receptor signaling function. Science 1994; 264: 1593–1596.

    Article  CAS  Google Scholar 

  4. Begg GE, Carrington L, Stokes PH, Matthews JM, Wouters MA, Husain A et al. Mechanism of allosteric regulation of transglutaminase 2 by GTP. Proc Natl Acad Sci USA 2006; 103: 19683–19688.

    Article  CAS  Google Scholar 

  5. Begg GE, Holman SR, Stokes PH, Matthews JM, Graham RM, Iismaa SE . Mutation of a critical arginine in the GTP-binding site of transglutaminase 2 disinhibits intracellular cross-linking activity. J Biol Chem 2006; 281: 12603–12609.

    Article  CAS  Google Scholar 

  6. Gundemir S, Johnson GV . Intracellular localization and conformational state of transglutaminase 2: implications for cell death. PLoS One 2009; 4: e6123.

    Article  Google Scholar 

  7. Pinkas DM, Strop P, Brunger AT, Khosla C . Transglutaminase 2 undergoes a large conformational change upon activation. PLoS Biol 2007; 5: e327.

    Article  Google Scholar 

  8. Gundemir S, Colak G, Tucholski J, Johnson GV . Transglutaminase 2: a molecular Swiss army knife. Biochim Biophys Acta 2012; 1823: 406–419.

    Article  CAS  Google Scholar 

  9. Jang TH, Lee DS, Choi K, Jeong EM, Kim IG, Kim YW et al. Crystal structure of transglutaminase 2 with GTP complex and amino acid sequence evidence of evolution of GTP binding site. PLoS One 2014; 9: e107005.

    Article  Google Scholar 

  10. Stamnaes J, Pinkas DM, Fleckenstein B, Khosla C, Sollid LM . Redox regulation of transglutaminase 2 activity. J Biol Chem 2010; 285: 25402–25409.

    Article  CAS  Google Scholar 

  11. Kiraly R, Csosz E, Kurtan T, Antus S, Szigeti K, Simon-Vecsei Z et al. Functional significance of five noncanonical Ca2+-binding sites of human transglutaminase 2 characterized by site-directed mutagenesis. FEBS J 2009; 276: 7083–7096.

    Article  CAS  Google Scholar 

  12. Bergamini CM . GTP modulates calcium binding and cation-induced conformational changes in erythrocyte transglutaminase. FEBS Lett 1988; 239: 255–258.

    Article  CAS  Google Scholar 

  13. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  Google Scholar 

  14. Cariati M, Purushotham AD . Stem cells and breast cancer. Histopathology 2008; 52: 99–107.

    Article  CAS  Google Scholar 

  15. Clevers H . The cancer stem cell: premises, promises and challenges. Nat Med 2011; 17: 313–319.

    Article  CAS  Google Scholar 

  16. Eckert RL, Fisher ML, Grun D, Adhikary G, Xu W, Kerr C . Transglutaminase is a tumor cell and cancer stem cell survival factor. Mol Carcinog 2015; 54: 947–958.

    Article  CAS  Google Scholar 

  17. Adhikary G, Grun D, Kerr C, Balasubramanian S, Rorke EA, Vemuri M et al. Identification of a population of epidermal squamous cell carcinoma cells with enhanced potential for tumor formation. PLoS One 2013; 8: e84324.

    Article  Google Scholar 

  18. Fisher ML, Adhikary G, Xu W, Kerr C, Keillor JW, Eckert RL . Type II transglutaminase stimulates epidermal cancer stem cell epithelial-mesenchymal transition. Oncotarget 2015; 6: 20525–20539.

    PubMed  PubMed Central  Google Scholar 

  19. Fisher ML, Keillor JW, Xu W, Eckert RL, Kerr C . Transglutaminase is required for epidermal squamous cell carcinoma stem cell survival. Mol Cancer Res 2015; 13: 1083–1094.

    Article  CAS  Google Scholar 

  20. Herman JF, Mangala LS, Mehta K . Implications of increased tissue transglutaminase (TG2) expression in drug-resistant breast cancer (MCF-7) cells. Oncogene 2006; 25: 3049–3058.

    Article  CAS  Google Scholar 

  21. Kumar A, Xu J, Brady S, Gao H, Yu D, Reuben J et al. Tissue transglutaminase promotes drug resistance and invasion by inducing mesenchymal transition in mammary epithelial cells. PLoS One 2010; 5: e13390.

    Article  Google Scholar 

  22. Kumar A, Xu J, Sung B, Kumar S, Yu D, Aggarwal BB et al. Evidence that GTP-binding domain but not catalytic domain of transglutaminase 2 is essential for epithelial-to-mesenchymal transition in mammary epithelial cells. Breast Cancer Res 2012; 14: R4.

    Article  CAS  Google Scholar 

  23. Griffin M, Mongeot A, Collighan R, Saint RE, Jones RA, Coutts IG et al. Synthesis of potent water-soluble tissue transglutaminase inhibitors. Bioorg Med Chem Lett 2008; 18: 5559–5562.

    Article  CAS  Google Scholar 

  24. Keillor JW, Apperley KY, Akbar A . Inhibitors of tissue transglutaminase. Trends Pharmacol Sci 2015; 36: 32–40.

    Article  CAS  Google Scholar 

  25. Keillor JW, Clouthier CM, Apperley KY, Akbar A, Mulani A . Acyl transfer mechanisms of tissue transglutaminase. Bioorg Chem 2014; 57: 186–197.

    Article  CAS  Google Scholar 

  26. Prime ME, Andersen OA, Barker JJ, Brooks MA, Cheng RK, Toogood-Johnson I et al. Discovery and structure-activity relationship of potent and selective covalent inhibitors of transglutaminase 2 for Huntington’s disease. J Med Chem 2012; 55: 1021–1046.

    Article  CAS  Google Scholar 

  27. Siegel M, Khosla C . Transglutaminase 2 inhibitors and their therapeutic role in disease states. Pharmacol Ther 2007; 115: 232–245.

    Article  CAS  Google Scholar 

  28. Yuan L, Siegel M, Choi K, Khosla C, Miller CR, Jackson EN et al. Transglutaminase 2 inhibitor, KCC009, disrupts fibronectin assembly in the extracellular matrix and sensitizes orthotopic glioblastomas to chemotherapy. Oncogene 2007; 26: 2563–2573.

    Article  CAS  Google Scholar 

  29. Keillor JW, Chica RA, Chabot N, Vinci V, Pardin C, Fortin E et al. The bioorganic chemistry of transglutaminase — from mechanism to inhibition and engineering. Can J Chem 2008; 86: 271–276.

    Article  CAS  Google Scholar 

  30. Caron NS, Munsie LN, Keillor JW, Truant R . Using FLIM-FRET to measure conformational changes of transglutaminase type 2 in live cells. PLoS One 2012; 7: e44159.

    Article  CAS  Google Scholar 

  31. Mehta K . Biological and therapeutic significance of tissue transglutaminase in pancreatic cancer. Amino Acids 2009; 36: 709–716.

    Article  CAS  Google Scholar 

  32. Chen Y, Mills JD, Periasamy A . Protein localization in living cells and tissues using FRET and FLIM. Differentiation 2003; 71: 528–541.

    Article  CAS  Google Scholar 

  33. Lakowicz JR, Szmacinski H, Nowaczyk K, Berndt KW, Johnson M . Fluorescence lifetime imaging. Anal Biochem 1992; 202: 316–330.

    Article  CAS  Google Scholar 

  34. Lakowicz JR, Szmacinski H, Nowaczyk K, Johnson ML . Fluorescence lifetime imaging of free and protein-bound NADH. Proc Natl Acad Sci USA 1992; 89: 1271–1275.

    Article  CAS  Google Scholar 

  35. Rizzo MA, Springer G, Segawa K, Zipfel WR, Piston DW . Optimization of pairings and detection conditions for measurement of FRET between cyan and yellow fluorescent proteins. Microsc Microanal 2006; 12: 238–254.

    Article  CAS  Google Scholar 

  36. Wallrabe H, Periasamy A . Imaging protein molecules using FRET and FLIM microscopy. Curr Opin Biotechnol 2005; 16: 19–27.

    Article  CAS  Google Scholar 

  37. Rizzo MA, Springer GH . Granada B and Piston DW. An improved cyan fluorescent protein variant useful for FRET. Nat Biotechnol 2004; 22: 445–449.

    Article  CAS  Google Scholar 

  38. Keillor JW, Chabot N, Roy I, Mulani A, Leogane O, Pardin C . Irreversible inhibitors of tissue transglutaminase. Adv Enzymol Relat Areas Mol Biol 2011; 78: 415–447.

    Article  CAS  Google Scholar 

  39. Pardin C, Roy I, Lubell WD, Keillor JW . Reversible and competitive cinnamoyl triazole inhibitors of tissue transglutaminase. Chem Biol Drug Des 2008; 72: 189–196.

    Article  CAS  Google Scholar 

  40. Jans R, Sturniolo MT, Eckert RL . Localization of the TIG3 transglutaminase interaction domain and demonstration that the amino-terminal region is required for TIG3 function as a keratinocyte differentiation regulator. J Invest Dermatol 2008; 128: 517–529.

    Article  CAS  Google Scholar 

  41. Oliverio S, Amendola A, Di Sano F, Farrace MG, Fesus L, Nemes Z et al. Tissue transglutaminase-dependent posttranslational modification of the retinoblastoma gene product in promonocytic cells undergoing apoptosis. Mol Cell Biol 1997; 17: 6040–6048.

    Article  CAS  Google Scholar 

  42. Sturniolo MT, Chandraratna RA, Eckert RL . A novel transglutaminase activator forms a complex with type 1 transglutaminase. Oncogene 2005; 24: 2963–2972.

    Article  CAS  Google Scholar 

  43. Sturniolo MT, Dashti SR, Deucher A, Rorke EA, Broome AM, Chandraratna RA et al. A novel tumor suppressor protein promotes keratinocyte terminal differentiation via activation of type I transglutaminase. J Biol Chem 2003; 278: 48066–48073.

    Article  CAS  Google Scholar 

  44. Clouthier CM, Mironov GG, Okhonin V, Berezovski MV, Keillor JW . Real-time monitoring of protein conformational dynamics in solution using kinetic capillary electrophoresis. Angew Chem Int Ed Engl 2012; 51: 12464–12468.

    Article  CAS  Google Scholar 

  45. Pardin C, Roy I, Chica RA, Bonneil E, Thibault P, Lubell WD et al. Photolabeling of tissue transglutaminase reveals the binding mode of potent cinnamoyl inhibitors. Biochemistry 2009; 48: 3346–3353.

    Article  CAS  Google Scholar 

  46. Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A, Fusenig NE . Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol 1988; 106: 761–771.

    Article  CAS  Google Scholar 

  47. Liu S, Cerione RA, Clardy J . Structural basis for the guanine nucleotide-binding activity of tissue transglutaminase and its regulation of transamidation activity. Proc Natl Acad Sci USA 2002; 99: 2743–2747.

    Article  CAS  Google Scholar 

  48. Agnihotri N, Kumar S, Mehta K . Tissue transglutaminase as a central mediator in inflammation-induced progression of breast cancer. Breast Cancer Res 2013; 15: 202.

    Article  CAS  Google Scholar 

  49. Kumar A, Gao H, Xu J, Reuben J, Yu D, Mehta K . Evidence that aberrant expression of tissue transglutaminase promotes stem cell characteristics in mammary epithelial cells. PLoS One 2011; 6: e20701.

    Article  CAS  Google Scholar 

  50. Fu J, Yang QY, Sai K, Chen FR, Pang JC, Ng HK et al. TGM2 inhibition attenuates ID1 expression in CD44-high glioma-initiating cells. Neuro Oncol 2013; 15: 1353–1365.

    Article  CAS  Google Scholar 

  51. Cao L, Shao M, Schilder J, Guise T, Mohammad KS, Matei D . Tissue transglutaminase links TGF-beta, epithelial to mesenchymal transition and a stem cell phenotype in ovarian cancer. Oncogene 2012; 31: 2521–2534.

    Article  CAS  Google Scholar 

  52. Badarau E, Collighan RJ, Griffin M . Recent advances in the development of tissue transglutaminase (TG2) inhibitors. Amino Acids 2013; 44: 119–127.

    Article  CAS  Google Scholar 

  53. Pavlyukov MS, Antipova NV, Balashova MV, Shakhparonov MI . Detection of transglutaminase 2 conformational changes in living cell. Biochem Biophys Res Commun 2012; 421: 773–779.

    Article  CAS  Google Scholar 

  54. Eckert RL, Sturniolo MT, Jans R, Kraft CA, Jiang H, Rorke EA . TIG3: a regulator of type I transglutaminase activity in epidermis. Amino Acids 2009; 36: 739–746.

    Article  CAS  Google Scholar 

  55. Adhikary G, Grun D, Balasubramanian S, Kerr C, Huang J, Eckert R . Survival of skin cancer stem cells requires the Ezh2 polycomb group protein. Carcinogenesis 2015; 36: 800–810.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grants R01-CA184027 and R01-CA131074 to Richard Eckert.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R L Eckert.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerr, C., Szmacinski, H., Fisher, M. et al. Transamidase site-targeted agents alter the conformation of the transglutaminase cancer stem cell survival protein to reduce GTP binding activity and cancer stem cell survival. Oncogene 36, 2981–2990 (2017). https://doi.org/10.1038/onc.2016.452

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.452

This article is cited by

Search

Quick links