Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Phosphorylation-dependent cleavage regulates von Hippel Lindau proteostasis and function

Abstract

Loss of von Hippel Lindau (VHL) protein function is a key driver of VHL diseases, including sporadic and inherited clear cell renal cell carcinoma. Modulation of the proteostasis of VHL, especially missense point-mutated VHL, is a promising approach to augmenting VHL levels and function. VHL proteostasis is regulated by multiple mechanisms including folding, chaperone binding, complex formation and phosphorylation. Nevertheless, many details underlying the regulations of VHL proteostasis are unknown. VHL is expressed as two variants, VHL30 and VHL19. Furthermore, the long-form variant of VHL was often detected as multiple bands by western blotting. However, how these multiple species of VHL are generated and whether the process regulates VHL proteostasis and function are unknown. We hypothesized that the two major species are generated by VHL protein cleavage, and the cleavage regulates VHL proteostasis and subsequent function. We characterized VHL species using genetical and pharmacological approaches and showed that VHL was first cleaved at the N-terminus by chymotrypsin C before being directed for proteasomal degradation. Casein kinase 2-mediated phosphorylation at VHL N-terminus was required for the cleavage. Furthermore, inhibition of cleavage stabilized VHL protein and thereby promoted HIF downregulation. Our study reveals a novel mechanism regulating VHL proteostasis and function, which is significant for identifying new drug targets and developing new therapeutic approaches targeting VHL deficiency in VHL diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Lonser RR, Glenn GM, Walther M, Chew EY, Libutti SK, Linehan WM et al. von Hippel-Lindau disease. Lancet 2003; 361: 2059–2067.

    Article  CAS  PubMed  Google Scholar 

  2. Jonasch E, Gao J, Rathmell WK . Renal cell carcinoma. BMJ 2014; 349: g4797.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gossage L, Eisen T, Maher ER . VHL, the story of a tumour suppressor gene. Nat Rev Cancer 2015; 15: 55–64.

    Article  CAS  PubMed  Google Scholar 

  4. Nickerson ML, Jaeger E, Shi Y, Durocher JA, Mahurkar S, Zaridze D et al. Improved identification of von Hippel-Lindau gene alterations in clear cell renal tumors. Clin Cancer Res 2008; 14: 4726–4734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D, Gronroos E et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012; 366: 883–892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kibel A, Iliopoulos O, DeCaprio JA, Kaelin WG Jr . Binding of the von Hippel-Lindau tumor suppressor protein to Elongin B and C. Science 1995; 269: 1444–1446.

    Article  CAS  PubMed  Google Scholar 

  7. Lonergan KM, Iliopoulos O, Ohh M, Kamura T, Conaway RC, Conaway JW et al. Regulation of hypoxia-inducible mRNAs by the von Hippel-Lindau tumor suppressor protein requires binding to complexes containing elongins B/C and Cul2. Mol Cell Biol 1998; 18: 732–741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 1999; 399: 271–275.

    Article  CAS  PubMed  Google Scholar 

  9. Kondo K, Kim WY, Lechpammer M, Kaelin WG . Inhibition of HIF2alpha is sufficient to suppress pVHL-defective tumor growth. PLoS Biol 2003; 1: E83.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kondo K, Klco J, Nakamura E, Lechpammer M, Kaelin WG . Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell 2002; 1: 237–246.

    Article  CAS  PubMed  Google Scholar 

  11. Ding Z, German P, Bai S, Reddy AS, Liu XD, Sun M et al. Genetic and pharmacological strategies to refunctionalize the von Hippel Lindau R167Q mutant protein. Cancer Res 2014; 74: 3127–3136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Feldman DE, Thulasiraman V, Ferreyra RG, Frydman J . Formation of the VHL-elongin BC tumor suppressor complex is mediated by the chaperonin TRiC. Mol Cell 1999; 4: 1051–1061.

    Article  CAS  PubMed  Google Scholar 

  13. Feldman DE, Spiess C, Howard DE, Frydman J . Tumorigenic mutations in VHL disrupt folding in vivo by interfering with chaperonin binding. Mol Cell 2003; 12: 1213–1224.

    Article  CAS  PubMed  Google Scholar 

  14. Schoenfeld AR, Davidowitz EJ, Burk RD, Elongin BC . Complex prevents degradation of von Hippel-Lindau tumor suppressor gene products. Proc Natl Acad Sci USA 2000; 97: 8507–8512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Banks RE, Tirukonda P, Taylor C, Hornigold N, Astuti D, Cohen D et al. Genetic and epigenetic analysis of von Hippel-Lindau (VHL) gene alterations and relationship with clinical variables in sporadic renal cancer. Cancer Res 2006; 66: 2000–2011.

    Article  CAS  PubMed  Google Scholar 

  16. Rechsteiner MP, von Teichman A, Nowicka A, Sulser T, Schraml P, Moch H . VHL gene mutations and their effects on hypoxia inducible factor HIFα: identification of potential driver and passenger mutations. Cancer Res 2011; 71: 5500–5511.

    Article  CAS  PubMed  Google Scholar 

  17. Lee CM, Hickey MM, Sanford CA, McGuire CG, Cowey CL, Simon MC et al. VHL Type 2B gene mutation moderates HIF dosage in vitro and in vivo. Oncogene 2009; 28: 1694–1705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang C, Huntoon K, Ksendzovsky A, Zhuang Z, Lonser RR . Proteostasis modulators prolong missense VHL protein activity and halt tumor progression. Cell Rep 2013; 3: 52–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ding Z, German P, Bai S, Feng Z, Gao M, Si W et al. Agents that stabilize mutated von Hippel-Lindau (VHL) protein: results of a high-throughput screen to identify compounds that modulate VHL proteostasis. J Biomol Screen 2012; 17: 572–580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schoenfeld A, Davidowitz EJ, Burk RD . A second major native von Hippel-Lindau gene product, initiated from an internal translation start site, functions as a tumor suppressor. Proc Natl Acad Sci USA 1998; 95: 8817–8822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Iliopoulos O, Ohh M, Kaelin WG . pVHL19 is a biologically active product of the von Hippel–Lindau gene arising from internal translation initiation. Proc Natl Acad Sci 1998; 95: 11661–11666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Duan DR, Humphrey JS, Chen DY, Weng Y, Sukegawa J, Lee S et al. Characterization of the VHL tumor suppressor gene product: localization, complex formation, and the effect of natural inactivating mutations. Proc Natl Acad Sci 1995; 92: 6459–6463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Scaglioni PP, Yung TM, Cai LF, Erdjument-Bromage H, Kaufman AJ, Singh B et al. A CK2-dependent mechanism for degradation of the PML tumor suppressor. Cell 2006; 126: 269–283.

    Article  CAS  PubMed  Google Scholar 

  24. Ampofo E, Kietzmann T, Zimmer A, Jakupovic M, Montenarh M, Gotz C . Phosphorylation of the von Hippel-Lindau protein (VHL) by protein kinase CK2 reduces its protein stability and affects p53 and HIF-1alpha mediated transcription. Int J Biochem Cell Biol 2010; 42: 1729–1735.

    Article  CAS  PubMed  Google Scholar 

  25. Lolkema MP, Gervais ML, Snijckers CM, Hill RP, Giles RH, Voest EE et al. Tumor suppression by the von Hippel-Lindau protein requires phosphorylation of the acidic domain. J Biol Chem 2005; 280: 22205–22211.

    Article  CAS  PubMed  Google Scholar 

  26. Powers JC, Asgian JL, Ekici ÖD, James KE . Irreversible inhibitors of serine, cysteine, and threonine proteases. Chem Rev 2002; 102: 4639–4750.

    Article  CAS  PubMed  Google Scholar 

  27. Stalter G, Siemer S, Becht E, Ziegler M, Remberger K, Issinger OG . Asymmetric expression of protein kinase CK2 subunits in human kidney tumors. Biochem Biophys Res Commun 1994; 202: 141–147.

    Article  CAS  PubMed  Google Scholar 

  28. Landesman-Bollag E, Romieu-Mourez R, Song DH, Sonenshein GE, Cardiff RD, Seldin DC . Protein kinase CK2 in mammary gland tumorigenesis. Oncogene 2001; 20: 3247–3257.

    Article  CAS  PubMed  Google Scholar 

  29. Pizzi M, Piazza F, Agostinelli C, Fuligni F, Benvenuti P, Mandato E et al. Protein kinase CK2 is widely expressed in follicular, Burkitt and diffuse large B-cell lymphomas and propels malignant B-cell growth. Oncotarget 2015; 6: 6544–6552.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Montenarh M . Protein kinase CK2 and angiogenesis. Adv Clin Exp Med 2014; 23: 153–158.

    Article  PubMed  Google Scholar 

  31. Guerra B, Rasmussen TDL, Schnitzler A, Jensen HH, Boldyreff BS, Miyata Y et al. Protein kinase CK2 inhibition is associated with the destabilization of HIF-1α in human cancer cells. Cancer Lett 2014; 356: 751–761.

    Article  PubMed  Google Scholar 

  32. Mottet D, Ruys SP, Demazy C, Raes M, Michiels C . Role for casein kinase 2 in the regulation of HIF-1 activity. Int J Cancer 2005; 117: 764–774.

    Article  CAS  PubMed  Google Scholar 

  33. Ding Z, Liang J, Lu Y, Yu Q, Songyang Z, Lin SY et al. A retrovirus-based protein complementation assay screen reveals functional AKT1-binding partners. Proc Natl Acad Sci USA 2006; 103: 15014–15019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Kimryn Rathmell for providing renal proximal tubule epithelial cells. This work was supported by a grant from The University of Texas MD Anderson Cancer Center Kidney Cancer Multidisciplinary Research Program (ZD), an MD Anderson Cancer Center Institutional Research Grant (ZD), the NIH grant UO1CA168394 (KLS and GBM), the NIH grant 5 PN2 EY016525-10 (EJ) and NCI CCSG grant to MD Anderson Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E Jonasch or Z Ding.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

German, P., Bai, S., Liu, XD. et al. Phosphorylation-dependent cleavage regulates von Hippel Lindau proteostasis and function. Oncogene 35, 4973–4980 (2016). https://doi.org/10.1038/onc.2016.40

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.40

This article is cited by

Search

Quick links