Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

p53 deficiency induces cancer stem cell pool expansion in a mouse model of triple-negative breast tumors

Subjects

Abstract

Triple-negative breast cancer is a heterogeneous disease characterized by the expression of basal cell markers, no estrogen or progesterone receptor expression and a lack of HER2 overexpression. Triple-negative tumors often display activated Wnt/β-catenin signaling and most have impaired p53 function. We studied the interplay between p53 loss and Wnt/β-catenin signaling in stem cell function and tumorigenesis, by deleting p53 from the mammary epithelium of K5ΔNβcat mice displaying a constitutive activation of Wnt/β-catenin signaling in basal cells. K5ΔNβcat transgenic mice present amplification of the basal stem cell pool and develop triple-negative mammary carcinomas. The loss of p53 in K5ΔNβcat mice led to an early expansion of mammary stem/progenitor cells and accelerated the formation of triple-negative tumors. In particular, p53-deficient tumors expressed high levels of integrins and extracellular matrix components and were enriched in cancer stem cells. They also overexpressed the tyrosine kinase receptor Met, a feature characteristic of human triple-negative breast tumors. The inhibition of Met kinase activity impaired tumorsphere formation, demonstrating the requirement of Met signaling for cancer stem cell growth in this model. Human basal-like breast cancers with predicted mutated p53 status had higher levels of MET expression than tumors with wild-type p53. These results connect p53 loss and β-catenin activation to stem cell regulation and tumorigenesis in triple-negative cancer and highlight the role of Met signaling in maintaining cancer stem cell properties, revealing new cues for targeted therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Bertucci F, Finetti P, Birnbaum D . Basal breast cancer: a complex and deadly molecular subtype. Curr Mol Med 2012; 12: 96–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Reis-Filho JS, Pusztai L . Gene expression profiling in breast cancer: classification, prognostication, and prediction. Lancet 2011; 378: 1812–1823.

    Article  CAS  PubMed  Google Scholar 

  3. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 2001; 98: 10869–10874.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Farmer P, Bonnefoi H, Becette V, Tubiana-Hulin M, Fumoleau P, Larsimont D et al. Identification of molecular apocrine breast tumours by microarray analysis. Oncogene 2005; 24: 4660–4671.

    Article  CAS  PubMed  Google Scholar 

  5. Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 2010; 12: R68.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Skibinski A, Kuperwasser C . The origin of breast tumor heterogeneity. Oncogene 2015; 34: 5309–5316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH et al. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 2009; 15: 907–913.

    Article  CAS  PubMed  Google Scholar 

  8. Prater MD, Petit V, Alasdair Russell I, Giraddi RR, Shehata M, Menon S et al. Mammary stem cells have myoepithelial cell properties. Nat Cell Biol 2014; 16: 942–950 941-947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML et al. Generation of a functional mammary gland from a single stem cell. Nature 2006; 439: 84–88.

    Article  CAS  PubMed  Google Scholar 

  10. Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D et al. Purification and unique properties of mammary epithelial stem cells. Nature 2006; 439: 993–997.

    Article  CAS  PubMed  Google Scholar 

  11. Rios AC, Fu NY, Lindeman GJ, Visvader JE . In situ identification of bipotent stem cells in the mammary gland. Nature 2014; 506: 322–327.

    Article  CAS  PubMed  Google Scholar 

  12. van Amerongen R, Bowman AN, Nusse R . Developmental stage and time dictate the fate of Wnt/beta-catenin-responsive stem cells in the mammary gland. Cell Stem Cell 2012; 11: 387–400.

    Article  CAS  PubMed  Google Scholar 

  13. Van Keymeulen A, Rocha AS, Ousset M, Beck B, Bouvencourt G, Rock J et al. Distinct stem cells contribute to mammary gland development and maintenance. Nature 2011; 479: 189–193.

    Article  CAS  PubMed  Google Scholar 

  14. Korkaya H, Paulson A, Charafe-Jauffret E, Ginestier C, Brown M, Dutcher J et al. Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling. PLoS Biol 2009; 7: e1000121.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zeng YA, Nusse R . Wnt proteins are self-renewal factors for mammary stem cells and promote their long-term expansion in culture. Cell Stem Cell 2010; 6: 568–577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Moumen M, Chiche A, Deugnier MA, Petit V, Gandarillas A, Glukhova MA et al. The proto-oncogene Myc is essential for mammary stem cell function. Stem Cells 2012; 30: 1246–1254.

    Article  CAS  PubMed  Google Scholar 

  17. Teissedre B, Pinderhughes A, Incassati A, Hatsell SJ, Hiremath M, Cowin P . MMTV-Wnt1 and -DeltaN89beta-catenin induce canonical signaling in distinct progenitors and differentially activate Hedgehog signaling within mammary tumors. PLoS One 2009; 4: e4537.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Teuliere J, Faraldo MM, Deugnier MA, Shtutman M, Ben-Ze'ev A, Thiery JP et al. Targeted activation of beta-catenin signaling in basal mammary epithelial cells affects mammary development and leads to hyperplasia. Development 2005; 132: 267–277.

    Article  CAS  PubMed  Google Scholar 

  19. Moumen M, Chiche A, Decraene C, Petit V, Gandarillas A, Deugnier MA et al. Myc is required for beta-catenin-mediated mammary stem cell amplification and tumorigenesis. Mol Cancer 2013; 12: 132.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bertheau P, Lehmann-Che J, Varna M, Dumay A, Poirot B, Porcher R et al. p53 in breast cancer subtypes and new insights into response to chemotherapy. Breast 2013; 22 (Suppl 2): S27–S29.

    Article  PubMed  Google Scholar 

  21. Dumay A, Feugeas JP, Wittmer E, Lehmann-Che J, Bertheau P, Espie M et al. Distinct tumor protein p53 mutants in breast cancer subgroups. Int J Cancer 2013; 132: 1227–1231.

    Article  CAS  PubMed  Google Scholar 

  22. Bonizzi G, Cicalese A, Insinga A, Pelicci PG . The emerging role of p53 in stem cells. Trends Mol Med 2012; 18: 6–12.

    Article  CAS  PubMed  Google Scholar 

  23. Spike BT, Wahl GM . p53, stem cells, and reprogramming: tumor suppression beyond guarding the genome. Genes Cancer 2011; 2: 404–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chiche A, Moumen M, Petit V, Jonkers J, Medina D, Deugnier MA et al. Somatic loss of p53 leads to stem/progenitor cell amplification in both mammary epithelial compartments, basal and luminal. Stem Cells 2013; 31: 1857–1867.

    Article  CAS  PubMed  Google Scholar 

  25. Cicalese A, Bonizzi G, Pasi CE, Faretta M, Ronzoni S, Giulini B et al. The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell 2009; 138: 1083–1095.

    Article  CAS  PubMed  Google Scholar 

  26. Medina D, Kittrell FS, Shepard A, Stephens LC, Jiang C, Lu J et al. Biological and genetic properties of the p53 null preneoplastic mammary epithelium. FASEB J 2002; 16: 881–883.

    Article  CAS  PubMed  Google Scholar 

  27. Tao L, Roberts AL, Dunphy KA, Bigelow C, Yan H, Jerry DJ . Repression of mammary stem/progenitor cells by p53 is mediated by Notch and separable from apoptotic activity. Stem Cells 2011; 29: 119–127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. DiMeo TA, Anderson K, Phadke P, Fan C, Perou CM, Naber S et al. A novel lung metastasis signature links Wnt signaling with cancer cell self-renewal and epithelial-mesenchymal transition in basal-like breast cancer. Cancer Res 2009; 69: 5364–5373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Khramtsov AI, Khramtsova GF, Tretiakova M, Huo D, Olopade OI, Goss KH . Wnt/beta-catenin pathway activation is enriched in basal-like breast cancers and predicts poor outcome. Am J Pathol 2010; 176: 2911–2920.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Geyer FC, Lacroix-Triki M, Savage K, Arnedos M, Lambros MB, MacKay A et al. beta-Catenin pathway activation in breast cancer is associated with triple-negative phenotype but not with CTNNB1 mutation. Mod Pathol 2011; 24: 209–231.

    Article  CAS  PubMed  Google Scholar 

  31. Ballard MS, Zhu A, Iwai N, Stensrud M, Mapps A, Postiglione MP et al. Mammary stem cell self-renewal is regulated by Slit2/Robo1 signaling through SNAI1 and mINSC. Cell Rep 2015; 13: 290–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Golubovskaya VM, Finch R, Kweh F, Massoll NA, Campbell-Thompson M, Wallace MR et al. p53 regulates FAK expression in human tumor cells. Mol Carcinog 2008; 47: 373–382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Miller LD, Smeds J, George J, Vega VB, Vergara L, Ploner A et al. An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc Natl Acad Sci USA 2005; 102: 13550–13555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liao JM, Cao B, Zhou X, Lu H . New insights into p53 functions through its target microRNAs. J Mol Cell Biol 2014; 6: 206–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jin L, Hu WL, Jiang CC, Wang JX, Han CC, Chu P et al. MicroRNA-149*, a p53-responsive microRNA, functions as an oncogenic regulator in human melanoma. Proc Natl Acad Sci USA 2011; 108: 15840–15845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shi L, Fisslthaler B, Zippel N, Fromel T, Hu J, Elgheznawy A et al. MicroRNA-223 antagonizes angiogenesis by targeting beta1 integrin and preventing growth factor signaling in endothelial cells. Circ Res 2013; 113: 1320–1330.

    Article  CAS  PubMed  Google Scholar 

  37. Gastaldi S, Comoglio PM, Trusolino L . The Met oncogene and basal-like breast cancer: another culprit to watch out for? Breast Cancer Res 2010; 12: 208.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ho-Yen CM, Jones JL, Kermorgant S . The clinical and functional significance of c-Met in breast cancer: a review. Breast Cancer Res 2015; 17: 52.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kataoka H, Kawaguchi M . Hepatocyte growth factor activator (HGFA): pathophysiological functions in vivo. FEBS J 2010; 277: 2230–2237.

    Article  CAS  PubMed  Google Scholar 

  40. Zoratti GL, Tanabe LM, Varela FA, Murray AS, Bergum C, Colombo E et al. Targeting matriptase in breast cancer abrogates tumour progression via impairment of stromal-epithelial growth factor signalling. Nat Commun 2015; 6: 6776.

    Article  CAS  PubMed  Google Scholar 

  41. Di-Cicco A, Petit V, Chiche A, Bresson L, Romagnoli M, Orian-Rousseau V et al. Paracrine Met signaling triggers epithelial-mesenchymal transition in mammary luminal progenitors, affecting their fate. Elife 2015; 4: e06104.

    Article  PubMed Central  Google Scholar 

  42. Gastaldi S, Sassi F, Accornero P, Torti D, Galimi F, Migliardi G et al. Met signaling regulates growth, repopulating potential and basal cell-fate commitment of mammary luminal progenitors: implications for basal-like breast cancer. Oncogene 2013; 32: 1428–1440.

    Article  CAS  PubMed  Google Scholar 

  43. Gherardi E, Birchmeier W, Birchmeier C, Vande Woude G . Targeting MET in cancer: rationale and progress. Nat Rev Cancer 2012; 12: 89–103.

    Article  CAS  PubMed  Google Scholar 

  44. Maroun CR, Rowlands T . The Met receptor tyrosine kinase: a key player in oncogenesis and drug resistance. Pharmacol Ther 2014; 142: 316–338.

    Article  CAS  PubMed  Google Scholar 

  45. Donehower LA, Godley LA, Aldaz CM, Pyle R, Shi YP, Pinkel D et al. Deficiency of p53 accelerates mammary tumorigenesis in Wnt-1 transgenic mice and promotes chromosomal instability. Genes Dev 1995; 9: 882–895.

    Article  CAS  PubMed  Google Scholar 

  46. Gunther EJ, Moody SE, Belka GK, Hahn KT, Innocent N, Dugan KD et al. Impact of p53 loss on reversal and recurrence of conditional Wnt-induced tumorigenesis. Genes Dev 2003; 17: 488–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lu X, Liu DP, Xu Y . The gain of function of p53 cancer mutant in promoting mammary tumorigenesis. Oncogene 2013; 32: 2900–2906.

    Article  CAS  PubMed  Google Scholar 

  48. Meniel V, Hay T, Douglas-Jones A, Sansom OJ, Clarke AR . Mutations in Apc and p53 synergize to promote mammary neoplasia. Cancer Res 2005; 65: 410–416.

    CAS  PubMed  Google Scholar 

  49. Ridgeway AG, McMenamin J, Leder P . P53 levels determine outcome during beta-catenin tumor initiation and metastasis in the mammary gland and male germ cells. Oncogene 2006; 25: 3518–3527.

    Article  CAS  PubMed  Google Scholar 

  50. Arcand SL, Akbari MR, Mes-Masson AM, Provencher D, Foulkes WD, Narod SA et al. Germline TP53 mutational spectrum in French Canadians with breast cancer. BMC Med Genet 2015; 16: 24.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Damalas A, Ben-Ze'ev A, Simcha I, Shtutman M, Leal JF, Zhurinsky J et al. Excess beta-catenin promotes accumulation of transcriptionally active p53. EMBO J 1999; 18: 3054–3063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Herschkowitz JI, Zhao W, Zhang M, Usary J, Murrow G, Edwards D et al. Comparative oncogenomics identifies breast tumors enriched in functional tumor-initiating cells. Proc Natl Acad Sci USA 2012; 109: 2778–2783.

    Article  CAS  PubMed  Google Scholar 

  53. Cagnet S, Faraldo MM, Kreft M, Sonnenberg A, Raymond K, Glukhova MA . Signaling events mediated by alpha3beta1 integrin are essential for mammary tumorigenesis. Oncogene 2014; 33: 4286–4295.

    Article  CAS  PubMed  Google Scholar 

  54. Chang C, Goel HL, Gao H, Pursell B, Shultz LD, Greiner DL et al. A laminin 511 matrix is regulated by TAZ and functions as the ligand for the alpha6Bbeta1 integrin to sustain breast cancer stem cells. Genes Dev 2015; 29: 1–6.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Meyer MJ, Fleming JM, Lin AF, Hussnain SA, Ginsburg E, Vonderhaar BK . CD44posCD49fhiCD133/2hi defines xenograft-initiating cells in estrogen receptor-negative breast cancer. Cancer Res 2010; 70: 4624–4633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vieira AF, Ricardo S, Ablett MP, Dionisio MR, Mendes N, Albergaria A et al. P-cadherin is coexpressed with CD44 and CD49f and mediates stem cell properties in basal-like breast cancer. Stem Cells 2012; 30: 854–864.

    Article  CAS  PubMed  Google Scholar 

  57. van Miltenburg MH, van Nimwegen MJ, Tijdens I, Lalai R, Kuiper R, Klarenbeek S et al. Mammary gland-specific ablation of focal adhesion kinase reduces the incidence of p53-mediated mammary tumour formation. Br J Cancer 2014; 110: 2747–2755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Trusolino L, Bertotti A, Comoglio PM . MET signalling: principles and functions in development, organ regeneration and cancer. Nat Rev Mol Cell Biol 2010; 11: 834–848.

    Article  CAS  PubMed  Google Scholar 

  59. Graveel CR, DeGroot JD, Su Y, Koeman J, Dykema K, Leung S et al. Met induces diverse mammary carcinomas in mice and is associated with human basal breast cancer. Proc Natl Acad Sci USA 2009; 106: 12909–12914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Holland JD, Gyorffy B, Vogel R, Eckert K, Valenti G, Fang L et al. Combined Wnt/beta-catenin, Met, and CXCL12/CXCR4 signals characterize basal breast cancer and predict disease outcome. Cell Rep 2013; 5: 1214–1227.

    Article  CAS  PubMed  Google Scholar 

  61. Ponzo MG, Lesurf R, Petkiewicz S, O'Malley FP, Pinnaduwage D, Andrulis IL et al. Met induces mammary tumors with diverse histologies and is associated with poor outcome and human basal breast cancer. Proc Natl Acad Sci USA 2009; 106: 12903–12908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Knight JF, Lesurf R, Zhao H, Pinnaduwage D, Davis RR, Saleh SM et al. Met synergizes with p53 loss to induce mammary tumors that possess features of claudin-low breast cancer. Proc Natl Acad Sci USA 2013; 110: E1301–E1310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ali NA, Wu J, Hochgrafe F, Chan H, Nair R, Ye S et al. Profiling the tyrosine phosphoproteome of different mouse mammary tumour models reveals distinct, model-specific signalling networks and conserved oncogenic pathways. Breast cancer res 2014; 16: 437.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Molyneux G, Geyer FC, Magnay FA, McCarthy A, Kendrick H, Natrajan R et al. BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell 2010; 7: 403–417.

    Article  CAS  PubMed  Google Scholar 

  65. Jonkers J, Meuwissen R, van der Gulden H, Peterse H, van der Valk M, Berns A . Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat Genet 2001; 29: 418–425.

    Article  CAS  PubMed  Google Scholar 

  66. Ramirez A, Page A, Gandarillas A, Zanet J, Pibre S, Vidal M et al. A keratin K5Cre transgenic line appropriate for tissue-specific or generalized Cre-mediated recombination. Genesis 2004; 39: 52–57.

    Article  CAS  PubMed  Google Scholar 

  67. Taddei I, Deugnier MA, Faraldo MM, Petit V, Bouvard D, Medina D et al. Beta1 integrin deletion from the basal compartment of the mammary epithelium affects stem cells. Nat Cell Biol 2008; 10: 716–722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. de la Grange P, Dutertre M, Martin N, Auboeuf D . FAST DB: a website resource for the study of the expression regulation of human gene products. Nucleic Acids Res 2005; 33: 4276–4284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jezequel P, Frenel JS, Campion L, Guerin-Charbonnel C, Gouraud W, Ricolleau G et al. bc-GenExMiner 3.0: new mining module computes breast cancer gene expression correlation analyses. Database (Oxford) 2013; 2013: bas060.

    Article  Google Scholar 

  70. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 2009; 27: 1160–1167.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Faraldo MM, Glukhova MA, Deugnier MA . The transplantation of mouse mammary epithelial cells into cleared mammary fat pads. Methods Mol Biol 2015; 1293: 161–172.

    Article  PubMed  Google Scholar 

  72. Hu Y, Smyth GK . ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J Immunol Methods 2009; 347: 70–78.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are particularly grateful to A Di Cicco, D Gentien, A Rapinat and B Albaud for expert technical assistance, to Dr I Grandjean, S Jannet and the personnel of the animal facilities at Institut Curie for taking care of the mice and to Z Maciorowski, A Viguier and S Grondin for excellent assistance with flow cytometry. We also thank Dr JL Jorcano for providing mouse strains and Dr D Medina for valuable discussions. The work was supported by grants from La Ligue Nationale Contre le Cancer (Equipe Labelisée 2013), Canceropôle Ile de France (2014-1-SEIN-01-ICR-1) to MAG. and a grant from La Ligue Nationale Contre le Cancer Comités d’Ile de France to MMF. MM and AC received funding from Association pour la Recherche sur le Cancer; AC, from Institut Curie and Servier Laboratories; MAG. is Directeur de Recherche, MMF, MAD and AG are Chargé de Recherche at the Institut National de la Santé et de la Recherche Médicale (INSERM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M M Faraldo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiche, A., Moumen, M., Romagnoli, M. et al. p53 deficiency induces cancer stem cell pool expansion in a mouse model of triple-negative breast tumors. Oncogene 36, 2355–2365 (2017). https://doi.org/10.1038/onc.2016.396

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.396

This article is cited by

Search

Quick links