Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

EGFR-Stat3 signalling in nerve glial cells modifies neurofibroma initiation

Abstract

Neurofibromatosis type 1 (NF1) is an inherited disease in which affected patients are predisposed to develop benign Schwann cell (SC) tumours called neurofibromas. In the mouse, loss of Nf1 in the SC lineage causes neurofibroma formation. The tyrosine kinase receptor EGFR is expressed in Schwann cell precursors (SCP), which have been implicated in plexiform neurofibroma initiation. To test if EGFR activity affects neurofibroma initiation, size, and/or number, we studied mice expressing human EGFR in SCs and SCP in the context of mice that form neurofibromas. Neurofibroma number increased in homozygous CNP-hEGFR mice versus heterozygous littermates, and neurofibroma number and size increased when CNP-hEGFR was crossed to Nf1fl/fl;DhhCre mice. Conversely, diminished EGFR signalling in Nf1fl/fl;DhhCre;Wa2/+ mice decreased neurofibroma number. In vivo transplantation verified the correlation between EGFR activity and neurofibroma formation. Mechanistically, expression of CNP-hEGFR increased SCP/neurofibroma-initiating cell self-renewal, a surrogate for tumour initiation, and activated P-Stat3. Further, Il-6 reinforced Jak2/Stat3 activation in SCPs and SCs. These gain- and loss-of function assays show that levels of tyrosine kinase expression in SCPs modify neurofibroma initiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Boyd KP, Korf BR, Theos A . Neurofibromatosis type 1. J Am Acad Dermatol 2009; 61: 1–14.

    Article  Google Scholar 

  2. Zhu Y, Ghosh P, Charnay P, Burns D, Parada L . Neurofibromas in NF1: Schwann cell origin and role of tumor environment. Science 2002; 296: 920–922.

    Article  CAS  Google Scholar 

  3. Rizvi T, Huang Y, Sidani A, Atit R, Largaespada D, Boissy R et al. A novel cytokine pathway suppresses glial cell melanogenesis after injury to adult nerve. J Neurosci 2002; 22: 9831–9840.

    Article  CAS  Google Scholar 

  4. Ribeiro S, Napoli I, White IJ, Parrinello S, Flanagan AM, Suter U et al. Injury signals cooperate with Nf1 loss to relieve the tumor-suppressive environment of adult peripheral nerve. Cell Rep 2013; 5: 126–136.

    Article  CAS  Google Scholar 

  5. Vogel KS, Klesse LJ, Velasco-Miguel S, Meyers K, Rushing EJ, Parada LF . Mouse tumor model for neurofibromatosis type 1. Science 1999; 286: 2176–2179.

    Article  CAS  Google Scholar 

  6. Wu J, Williams JP, Rizvi TA, Kordich JJ, Witte D, Meijer D et al. Plexiform and dermal neurofibromas and pigmentation are caused by Nf1 loss in desert hedgehog-expressing cells. Cancer Cell 2008; 13: 105–116.

    Article  CAS  Google Scholar 

  7. Mayes DA, Rizvi TA, Cancelas JA, Kolasinski NT, Ciraolo GM, Stemmer-Rachamimov AO et al. Perinatal or adult Nf1 inactivation using tamoxifen-inducible PlpCre each cause neurofibroma formation. Cancer Res 2011; 71: 4675–4685.

    Article  CAS  Google Scholar 

  8. Le L, Liu C, Shipman T, Chen Z, Suter U, Parada L . Susceptible stages in Schwann cells for NF1-associated plexiform neurofibroma development. Cancer Res 2011; 71: 4686–4695.

    Article  CAS  Google Scholar 

  9. Chen Z, Liu C, Patel AJ, Liao CP, Wang Y, Le LQ . Cells of origin in the embryonic nerve roots for NF1-associated plexiform neurofibroma. Cancer Cell 2014; 26: 695–706.

    Article  Google Scholar 

  10. Carroll SL, Ratner N . How does the Schwann cell lineage form tumors in NF1? Glia 2008; 56: 1590–1605.

    Article  Google Scholar 

  11. Gomez-Sanchez JA, Lopez de Armentia M, Lujan R, Kessaris N, Richardson WD, Cabedo H . Sustained axon-glial signaling induces Schwann cell hyperproliferation, Remak bundle myelination, and tumorigenesis. J Neurosci 2009; 29: 11304–11315.

    Article  CAS  Google Scholar 

  12. Huijbregts R, Roth K, Schmidt R, Carroll S . Hypertrophic neuropathies and malignant peripheral nerve sheath tumors in transgenic mice overexpressing glial growth factor beta3 in myelinating Schwann cells. J Neurosci 2003; 23: 7269–7280.

    Article  CAS  Google Scholar 

  13. Ling B, Wu J, Miller S, Monk K, Shamekh R, Rizvi T et al. Role for the epidermal growth factor receptor in neurofibromatosis-related peripheral nerve tumorigenesis. Cancer Cell 2005; 7: 65–75.

    Article  CAS  Google Scholar 

  14. Holtkamp N, Malzer E, Zietsch J, Okuducu AF, Mucha J, Mawrin C et al. EGFR and erbB2 in malignant peripheral nerve sheath tumors and implications for targeted therapy. Neuro-Oncol 2008; 10: 946–957.

    Article  CAS  Google Scholar 

  15. DeClue JE, Heffelfinger S, Benvenuto G, Ling B, Li S, Rui W et al. Epidermal growth factor receptor expression in neurofibromatosis type-1 related tumors and NF1 animal models. J Clin Invest 2000; 105: 1233–1241.

    Article  CAS  Google Scholar 

  16. Li H, Zhao X, Yan X, Jessen WJ, Kim MO, Dombi E et al. Runx1 contributes to neurofibromatosis type 1 neurofibroma formation. Oncogene 2016; 35: 1468–1474.

    Article  CAS  Google Scholar 

  17. Yarden Y . The EGFR family and its ligands in human cancer. Signalling mechanisms and therapeutic opportunities. Eur J Cancer 2001; 37 (Suppl): S3–S8.

    Article  CAS  Google Scholar 

  18. Williams JP, Wu J, Johansson G, Rizvi TA, Miller SC, Geiger H et al. Nf1 mutation expands an EGFR-dependent peripheral nerve progenitor that confers neurofibroma tumorigenic potential. Cell Stem Cell 2008; 3: 658–669.

    Article  CAS  Google Scholar 

  19. Wu J, Keng VW, Patmore DM, Kendall JJ, Patel AV, Jousma E et al. Insertional mutagenesis identifies a STAT3/Arid1b/beta-catenin pathway driving neurofibroma initiation. Cell Rep 2016; 14: 1979–1990.

    Article  CAS  Google Scholar 

  20. Battle TE, Frank DA . The role of STATs in apoptosis. Curr Mol Med 2002; 2: 381–392.

    Article  CAS  Google Scholar 

  21. Wu J, Crimmins J, Monk K, Williams J, Fitzgerald M, Tedesco S et al. Perinatal epidermal growth factor receptor blockade prevents peripheral nerve disruption in a mouse model reminiscent of benign world health organization grade I neurofibroma. Am J Pathol 2006; 168: 1686–1696.

    Article  CAS  Google Scholar 

  22. Wu J, Patmore DM, Jousma E, Eaves DW, Breving K, Patel AV et al. EGFR-STAT3 signaling promotes formation of malignant peripheral nerve sheath tumors. Oncogene 2014; 33: 173–180.

    Article  CAS  Google Scholar 

  23. Luetteke N, Phillips H, Qiu T, Copeland N, Earp H, Jenkins N et al. The mouse waved-2 phenotype results from a point mutation in the EGF receptor tyrosine kinase. Genes Dev 1994; 8: 399–413.

    Article  CAS  Google Scholar 

  24. Joseph NM, Mosher JT, Buchstaller J, Snider P, McKeever PE, Lim M et al. The loss of Nf1 transiently promotes self-renewal but not tumorigenesis by neural crest stem cells. Cancer Cell 2008; 13: 129–140.

    Article  CAS  Google Scholar 

  25. Li H, Velasco-Miguel S, Vass W, Parada L, DeClue J . Epidermal growth factor receptor signaling pathways are associated with tumorigenesis in the Nf1:p53 mouse tumor model. Cancer Res 2002; 62: 4507–4513.

    CAS  PubMed  Google Scholar 

  26. Jessen WJ, Miller SJ, Jousma E, Wu J, Rizvi TA, Brundage ME et al. MEK inhibition exhibits efficacy in human and mouse neurofibromatosis tumors. J Clin Invest 2013; 123: 340–347.

    Article  CAS  Google Scholar 

  27. Wang L, Lee HK, Seo IA, Shin YK, Lee KY, Park HT . Cell type-specific STAT3 activation by gp130-related cytokines in the peripheral nerves. Neuroreport 2009; 20: 663–668.

    Article  CAS  Google Scholar 

  28. Zheng H, Chang L, Patel N, Yang J, Lowe L, Burns DK et al. Induction of abnormal proliferation by nonmyelinating Schwann cells triggers neurofibroma formation. Cancer Cell 2008; 13: 117–128.

    Article  CAS  Google Scholar 

  29. Chen S, Rio C, Ji RR, Dikkes P, Coggeshall RE, Woolf CJ et al. Disruption of ErbB receptor signaling in adult non-myelinating Schwann cells causes progressive sensory loss. Nat Neurosci 2003; 6: 1186–1193.

    Article  CAS  Google Scholar 

  30. Bos JL, Rehmann H, Wittinghofer A . GEFs and GAPs: critical elements in the control of small G proteins. Cell 2007; 129: 865–877.

    Article  CAS  Google Scholar 

  31. De Bruin EC, Cowell C, Warne PH, Jiang M, Saunders RE, Melnick MA et al. Reduced NF1 expression confers resistance to EGFR inhibition in lung cancer. Cancer Discov 2014; 4: 606–619.

    Article  CAS  Google Scholar 

  32. Harvey M, McArthur MJ, Montgomery CA Jr., Bradley A, Donehower LA . Genetic background alters the spectrum of tumors that develop in p53-deficient mice. FASEB J 1993; 7: 938–943.

    Article  CAS  Google Scholar 

  33. Walrath JC, Fox K, Truffer E, Gregory Alvord W, Quinones OA, Reilly KM . Chr 19(A/J) modifies tumor resistance in a sex- and parent-of-origin-specific manner. Mamm Genome 2009; 20: 214–223.

    Article  CAS  Google Scholar 

  34. Kazmi SJ, Byer SJ, Eckert JM, Turk AN, Huijbregts RP, Brossier NM et al. Transgenic mice overexpressing neuregulin-1 model neurofibroma-malignant peripheral nerve sheath tumor progression and implicate specific chromosomal copy number variations in tumorigenesis. Am J Pathol 2013; 182: 646–667.

    Article  CAS  Google Scholar 

  35. Rieley MB, Stevenson DA, Viskochil DH, Tinkle BT, Martin LJ, Schorry EK . Variable expression of neurofibromatosis 1 in monozygotic twins. Am J Med Genet 2011; 155A: 478–485.

    Article  Google Scholar 

  36. Upadhyaya M, Huson SM, Davies M, Thomas N, Chuzhanova N, Giovannini S et al. An absence of cutaneous neurofibromas associated with a 3-bp inframe deletion in exon 17 of the NF1 gene (c.2970-2972 delAAT): evidence of a clinically significant NF1 genotype-phenotype correlation. Am J Hum Genet 2007; 80: 140–151.

    Article  CAS  Google Scholar 

  37. Leppig KA, Kaplan P, Viskochil D, Weaver M, Ortenberg J, Stephens K . Familial neurofibromatosis 1 microdeletions: cosegregation with distinct facial phenotype and early onset of cutaneous neurofibromata. Am J Med Genet 1997; 73: 197–204.

    Article  CAS  Google Scholar 

  38. Mautner VF, Kluwe L, Friedrich RE, Roehl AC, Bammert S, Hogel J et al. Clinical characterisation of 29 neurofibromatosis type-1 patients with molecularly ascertained 1.4 Mb type-1 NF1 deletions. J Med Genet 2010; 47: 623–630.

    Article  CAS  Google Scholar 

  39. Easton DF, Ponder MA, Huson SM, Ponder BA . An analysis of variation in expression of neurofibromatosis (NF) type 1 (NF1): evidence for modifying genes. Am J Hum Genet 1993; 53: 305–313.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ryan MA, Nattamai KJ, Xing E, Schleimer D, Daria D, Sengupta A et al. Pharmacological inhibition of EGFR signaling enhances G-CSF-induced hematopoietic stem cell mobilization. Nat Med 2010; 16: 1141–1146.

    Article  CAS  Google Scholar 

  41. Lesina M, Kurkowski M, Ludes K, Rose-John S, Treiber M, Klöppel G et al. Stat3/Socs3 activation by IL-6 transsignaling promotes progression of pancreatic intraepithelial neoplasia and development of pancreatic cancer. Cancer Cell 2011; 19: 456–469.

    Article  CAS  Google Scholar 

  42. Corcoran RB, Contino G, Deshpande V, Tzatsos A, Conrad C, Benes CH et al. STAT3 plays a critical role in KRAS-induced pancreatic tumorigenesis. Cancer Res 2011; 71: 5020–5029.

    Article  CAS  Google Scholar 

  43. Ratner N, Williams JP, Kordich JJ, Kim HA . Schwann cell preparation from single mouse embryos: analyses of neurofibromin function in Schwann cells. Methods Enzymol 2006; 407:22–33.

    Article  CAS  Google Scholar 

  44. Stemmer-Rachamimov A, Louis D, Nielsen G, Antonescu C, Borowsky A, Bronson R et al. Comparative pathology of nerve sheath tumors in mouse models and humans. Cancer Res 2004; 64: 3718–3724.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Luis F Parada (Memorial Sloan Kettering, NY) for Nf1fl/fl mice and Dr Anat O Stemmer-Rachamimov (Massachusetts General Hospital) for assistance with mouse pathology. We thank Dr Adam Lane (CCHMC) for consultation on statistical analysis. This work was supported by a DAMD New Investigator Award (W81XWH-11-1-0259) (Jianqiang Wu) and NIH R01 NS28840 (Nancy Ratner).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Ratner.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Liu, W., Williams, J. et al. EGFR-Stat3 signalling in nerve glial cells modifies neurofibroma initiation. Oncogene 36, 1669–1677 (2017). https://doi.org/10.1038/onc.2016.386

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.386

This article is cited by

Search

Quick links