Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Deficiency of RITA results in multiple mitotic defects by affecting microtubule dynamics

Abstract

Deregulation of mitotic microtubule (MT) dynamics results in defective spindle assembly and chromosome missegregation, leading further to chromosome instability, a hallmark of tumor cells. RBP-J interacting and tubulin-associated protein (RITA) has been identified as a negative regulator of the Notch signaling pathway. Intriguingly, deregulated RITA is involved in primary hepatocellular carcinoma and other malignant entities. We were interested in the potential molecular mechanisms behind its involvement. We show here that RITA binds to tubulin and localizes to various mitotic MT structures. RITA coats MTs and affects their structures in vitro as well as in vivo. Tumor cell lines deficient of RITA display increased acetylated α-tubulin, enhanced MT stability and reduced MT dynamics, accompanied by multiple mitotic defects, including chromosome misalignment and segregation errors. Re-expression of wild-type RITA, but not RITA Δtub ineffectively binding to tubulin, restores the phenotypes, suggesting that the role of RITA in MT modulation is mediated via its interaction with tubulin. Mechanistically, RITA interacts with tubulin/histone deacetylase 6 (HDAC6) and its suppression decreases the binding of the deacetylase HDAC6 to tubulin/MTs. Furthermore, the mitotic defects and increased MT stability are also observed in RITA−/− mouse embryonic fibroblasts. RITA has thus a novel role in modulating MT dynamics and its deregulation results in erroneous chromosome segregation, one of the major reasons for chromosome instability in tumor cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

RITA:

RBP-J interacting and tubulin-associated protein

HDAC6:

histone deacetylase 6

MT:

microtubule

dSTORM:

direct stochastic optical reconstruction microscopy.

References

  1. Desai A, Mitchison TJ . Microtubule polymerization dynamics. Annu Rev Cell Dev Biol 1997; 13: 83–117.

    Article  CAS  PubMed  Google Scholar 

  2. Mitchison T, Kirschner M . Dynamic instability of microtubule growth. Nature 1984; 312: 237–242.

    Article  CAS  PubMed  Google Scholar 

  3. Hyman AA, Salser S, Drechsel DN, Unwin N, Mitchison TJ . Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP. Mol Biol Cell 1992; 3: 1155–1167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Howard J, Hyman AA . Dynamics and mechanics of the microtubule plus end. Nature 2003; 422: 753–758.

    Article  CAS  PubMed  Google Scholar 

  5. Akhmanova A, Steinmetz MO . Microtubule +TIPs at a glance. J Cell Sci 2010; 123 (Pt 20): 3415–3419.

    Article  CAS  PubMed  Google Scholar 

  6. Manning AL, Compton DA . Structural and regulatory roles of nonmotor spindle proteins. Curr Opin Cell Biol 2008; 20: 101–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yount AL, Zong H, Walczak CE . Regulatory mechanisms that control mitotic kinesins. Exp Cell Res 2015; 334: 70–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Goshima G, Scholey JM . Control of mitotic spindle length. Annu Rev Cell Dev Biol 2010; 26: 21–57.

    Article  CAS  PubMed  Google Scholar 

  9. Brouhard GJ, Rice LM . The contribution of alphabeta-tubulin curvature to microtubule dynamics. J Cell Biol 2014; 207: 323–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bakhoum SF, Compton DA . Chromosomal instability and cancer: a complex relationship with therapeutic potential. J Clin Invest 2012; 122: 1138–1143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Penela P, Nogues L, Mayor F Jr . Role of G protein-coupled receptor kinases in cell migration. Curr Opin Cell Biol 2014; 27: 10–17.

    Article  CAS  PubMed  Google Scholar 

  12. Wacker SA, Alvarado C, von WG, Knippschild U, Wiedenmann J, Clauss K et al. RITA, a novel modulator of Notch signalling, acts via nuclear export of RBP-J. EMBO J 2011; 30: 43–56.

    Article  CAS  PubMed  Google Scholar 

  13. Tamura K, Taniguchi Y, Minoguchi S, Sakai T, Tun T, Furukawa T et al. Physical interaction between a novel domain of the receptor Notch and the transcription factor RBP-J kappa/Su(H). Curr Biol 1995; 5: 1416–1423.

    Article  CAS  PubMed  Google Scholar 

  14. Wang H, Chen G, Wang H, Liu C . RITA inhibits growth of human hepatocellular carcinoma through induction of apoptosis. Oncol Res 2013; 20: 437–445.

    Article  CAS  PubMed  Google Scholar 

  15. Wang H, Yang Z, Liu C, Huang S, Wang H, Chen Y et al. RBP-J-interacting and tubulin-associated protein induces apoptosis and cell cycle arrest in human hepatocellular carcinoma by activating the p53-Fbxw7 pathway. Biochem Biophys Res Commun 2014; 454: 71–77.

    Article  CAS  PubMed  Google Scholar 

  16. Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H et al. COSMIC: exploring the world's knowledge of somatic mutations in human cancer. Nucleic Acids Res 2015; 43: D805–D811.

    Article  CAS  PubMed  Google Scholar 

  17. Rust MJ, Bates M, Zhuang X . Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 2006; 3: 793–795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hoogendoorn E, Crosby KC, Leyton-Puig D, Breedijk RM, Jalink K, Gadella TW et al. The fidelity of stochastic single-molecule super-resolution reconstructions critically depends upon robust background estimation. Sci Rep 2014; 4: 3854.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Heilemann M, van de Linde S, Schuttpelz M, Kasper R, Seefeldt B, Mukherjee A et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed Engl 2008; 47: 6172–6176.

    Article  CAS  PubMed  Google Scholar 

  20. Bates M, Huang B, Dempsey GT, Zhuang X . Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 2007; 317: 1749–1753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pakala SB, Nair VS, Reddy SD, Kumar R . Signaling-dependent phosphorylation of mitotic centromere-associated kinesin regulates microtubule depolymerization and its centrosomal localization. J Biol Chem 2012; 287: 40560–40569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ritter A, Sanhaji M, Steinhauser K, Roth S, Louwen F, Yuan J . The activity regulation of the mitotic centromere-associated kinesin by Polo-like kinase 1. Oncotarget 2015; 6: 6641–6655.

    PubMed  Google Scholar 

  23. Sanhaji M, Ritter A, Belsham HR, Friel CT, Roth S, Louwen F et al. Polo-like kinase 1 regulates the stability of the mitotic centromere-associated kinesin in mitosis. Oncotarget 2014; 5: 3130–3144.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Luders J, Patel UK, Stearns T . GCP-WD is a gamma-tubulin targeting factor required for centrosomal and chromatin-mediated microtubule nucleation. Nat Cell Biol 2006; 8: 137–147.

    Article  PubMed  Google Scholar 

  25. Meunier S, Vernos I . K-fibre minus ends are stabilized by a RanGTP-dependent mechanism essential for functional spindle assembly. Nat Cell Biol 2011; 13: 1406–1414.

    Article  CAS  PubMed  Google Scholar 

  26. Janke C, Bulinski JC . Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat Rev Mol Cell Biol 2011; 12: 773–786.

    Article  CAS  PubMed  Google Scholar 

  27. Akella JS, Wloga D, Kim J, Starostina NG, Lyons-Abbott S, Morrissette NS et al. MEC-17 is an alpha-tubulin acetyltransferase. Nature 2010; 467: 218–222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shida T, Cueva JG, Xu Z, Goodman MB, Nachury MV . The major alpha-tubulin K40 acetyltransferase alphaTAT1 promotes rapid ciliogenesis and efficient mechanosensation. Proc Natl Acad Sci USA 2010; 107: 21517–21522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A et al. HDAC6 is a microtubule-associated deacetylase. Nature 2002; 417: 455–458.

    Article  CAS  PubMed  Google Scholar 

  30. Matsuyama A, Shimazu T, Sumida Y, Saito A, Yoshimatsu Y, Seigneurin-Berny D et al. In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation. EMBO J 2002; 21: 6820–6831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. North BJ, Marshall BL, Borra MT, Denu JM, Verdin E . The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell 2003; 11: 437–444.

    Article  CAS  PubMed  Google Scholar 

  32. Gadde S, Heald R . Mechanisms and molecules of the mitotic spindle. Curr Biol 2004; 14: R797–R805.

    Article  CAS  PubMed  Google Scholar 

  33. L'Hernault SW, Rosenbaum JL . Chlamydomonas alpha-tubulin is posttranslationally modified by acetylation on the epsilon-amino group of a lysine. Biochemistry 1985; 24: 473–478.

    Article  CAS  PubMed  Google Scholar 

  34. Piperno G, LeDizet M, Chang XJ . Microtubules containing acetylated alpha-tubulin in mammalian cells in culture. J Cell Biol 1987; 104: 289–302.

    Article  CAS  PubMed  Google Scholar 

  35. Soppina V, Herbstman JF, Skiniotis G, Verhey KJ . Luminal localization of alpha-tubulin K40 acetylation by cryo-EM analysis of fab-labeled microtubules. PLoS One 2012; 7: e48204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Maruta H, Greer K, Rosenbaum JL . The acetylation of alpha-tubulin and its relationship to the assembly and disassembly of microtubules. J Cell Biol 1986; 103: 571–579.

    Article  CAS  PubMed  Google Scholar 

  37. Cambray-Deakin MA, Burgoyne RD . Acetylated and detyrosinated alpha-tubulins are co-localized in stable microtubules in rat meningeal fibroblasts. Cell Motil Cytoskeleton 1987; 8: 284–291.

    Article  CAS  PubMed  Google Scholar 

  38. Webster DR, Borisy GG . Microtubules are acetylated in domains that turn over slowly. J Cell Sci 1989; 92 (Pt 1): 57–65.

    PubMed  Google Scholar 

  39. Song Y, Brady ST . Post-translational modifications of tubulin: pathways to functional diversity of microtubules. Trends Cell Biol 2015; 25: 125–136.

    Article  CAS  PubMed  Google Scholar 

  40. Giustiniani J, Daire V, Cantaloube I, Durand G, Pous C, Perdiz D et al. Tubulin acetylation favors Hsp90 recruitment to microtubules and stimulates the signaling function of the Hsp90 clients Akt/PKB and p53. Cell Signal 2009; 21: 529–539.

    Article  CAS  PubMed  Google Scholar 

  41. Wang B, Rao YH, Inoue M, Hao R, Lai CH, Chen D et al. Microtubule acetylation amplifies p38 kinase signalling and anti-inflammatory IL-10 production. Nat Commun 2014; 5: 3479.

    Article  PubMed  Google Scholar 

  42. Miyake Y, Keusch JJ, Wang L, Saito M, Hess D, Wang X et al. Structural insights into HDAC6 tubulin deacetylation and its selective inhibition. Nat Chem Biol 2016; 12: 748–754.

    Article  CAS  PubMed  Google Scholar 

  43. Kreis NN, Sanhaji M, Rieger MA, Louwen F, Yuan J . p21Waf1/Cip1 deficiency causes multiple mitotic defects in tumor cells. Oncogene 2014; 33: 5716–5728.

    Article  CAS  PubMed  Google Scholar 

  44. Vassilev LT, Tovar C, Chen S, Knezevic D, Zhao X, Sun H et al. Selective small-molecule inhibitor reveals critical mitotic functions of human CDK1. Proc Natl Acad Sci USA 2006; 103: 10660–10665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Muschol-Steinmetz C, Friemel A, Kreis NN, Reinhard J, Yuan J, Louwen F . Function of survivin in trophoblastic cells of the placenta. PLoS One 2013; 8: e73337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sanhaji M, Friel CT, Kreis NN, Kramer A, Martin C, Howard J et al. Functional and spatial regulation of mitotic centromere-associated kinesin by cyclin-dependent kinase 1. Mol Cell Biol 2010; 30: 2594–2607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sanhaji M, Louwen F, Zimmer B, Kreis NN, Roth S, Yuan J . Polo-like kinase 1 inhibitors, mitotic stress and the tumor suppressor p53. Cell Cycle 2013; 12: 1340–1351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sanhaji M, Kreis NN, Zimmer B, Berg T, Louwen F, Yuan J . p53 is not directly relevant to the response of Polo-like kinase 1 inhibitors. Cell Cycle 2012; 11: 543–553.

    Article  CAS  PubMed  Google Scholar 

  49. Muschol-Steinmetz C, Jasmer B, Kreis NN, Steinhauser K, Ritter A, Rolle U et al. B-cell lymphoma 6 promotes proliferation and survival of trophoblastic cells. Cell Cycle 2016; 15: 827–839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nguyen HL, Gruber D, Bulinski JC . Microtubule-associated protein 4 (MAP4) regulates assembly, protomer-polymer partitioning and synthesis of tubulin in cultured cells. J Cell Sci 1999; 112 (Pt 12): 1813–1824.

    CAS  PubMed  Google Scholar 

  51. Sharma N, Kosan ZA, Stallworth JE, Berbari NF, Yoder BK . Soluble levels of cytosolic tubulin regulate ciliary length control. Mol Biol Cell 2011; 22: 806–816.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Eckerdt F, Yuan J, Saxena K, Martin B, Kappel S, Lindenau C et al. Polo-like kinase 1-mediated phosphorylation stabilizes Pin1 by inhibiting its ubiquitination in human cells. J Biol Chem 2005; 280: 36575–36583.

    Article  CAS  PubMed  Google Scholar 

  53. Kreis NN, Louwen F, Zimmer B, Yuan J . Loss of p21Cip1/CDKN1A renders cancer cells susceptible to Polo-like kinase 1 inhibition. Oncotarget 2015; 6: 6611–6626.

    Article  PubMed  Google Scholar 

  54. Kreis NN, Sanhaji M, Kramer A, Sommer K, Rodel F, Strebhardt K et al. Restoration of the tumor suppressor p53 by downregulating cyclin B1 in human papillomavirus 16/18-infected cancer cells. Oncogene 2010; 29: 5591–5603.

    Article  CAS  PubMed  Google Scholar 

  55. Magiera MM, Janke C . Investigating tubulin posttranslational modifications with specific antibodies. Methods Cell Biol 2013; 115: 247–267.

    Article  CAS  PubMed  Google Scholar 

  56. Ritter A, Sanhaji M, Friemel A, Roth S, Rolle U, Louwen F et al. Functional analysis of phosphorylation of the mitotic centromere-associated kinesin by Aurora B kinase in human tumor cells. Cell Cycle 2015; 14: 3755–3767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr L Wordeman, University of Washington, and Dr A Bird, MPI, Dortmund, Germany, for their critical manuscript reading and valuable comments. The work was supported by the Deutsche Forschungsgemeinschaft (SFB1074/A3 to FO), the BMBF (research nucleus SyStAR to FO). PK was supported by the International Graduate School in Molecular Medicine, Ulm, Germany (GSC270).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Yuan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steinhäuser, K., Klöble, P., Kreis, NN. et al. Deficiency of RITA results in multiple mitotic defects by affecting microtubule dynamics. Oncogene 36, 2146–2159 (2017). https://doi.org/10.1038/onc.2016.372

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.372

This article is cited by

Search

Quick links