Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Long noncoding RNA-SRLR elicits intrinsic sorafenib resistance via evoking IL-6/STAT3 axis in renal cell carcinoma

Abstract

Although the use of sorafenib appears to increase the survival rate of renal cell carcinoma (RCC) patients, there is also a proportion of patients who exhibit a poor primary response to sorafenib therapy. It is therefore critical to elucidate the mechanisms underlying sorafenib resistance and find representative biomarkers for sorafenib treatment in RCC patients. Herein, we identified a long non-coding RNA referred to as lncRNA-SRLR (sorafenib resistance-associated lncRNA in RCC) that is upregulated in intrinsically sorafenib-resistant RCCs. lncRNA-SRLR knockdown sensitized nonresponsive RCC cells to sorafenib treatment, whereas the overexpression of lncRNA-SRLR conferred sorafenib resistance to responsive RCC cells. Mechanistically, lncRNA-SRLR directly binds to NF-κB and promotes IL-6 transcription, leading to the activation of STAT3 and the development of sorafenib tolerance. A STAT3 inhibitor and IL-6-receptor antagonist both restored the response to sorafenib treatment. Moreover, a clinical investigation demonstrated that high levels of lncRNA-SRLR correlated with poor responses to sorafenib therapy in RCC patients. Collectively, lncRNA-SRLR may serve as not only a predictive biomarker for inherent sorafenib resistance but also as a therapeutic target to enhance responses to sorafenib in RCC patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

Abbreviations

RCC:

renal cell carcinoma

STAT3:

Signal transducer and activator of transcription 3

NF-κB:

nuclear factor kappa-light-chain-enhancer of activated B cells

IL-6:

interleukin-6

KIT:

stem-cell growth factor receptor

Bcl-2:

B-cell CLL/lymphoma 2

References

  1. Ljungberg B, Campbell SC, Choi HY, Jacqmin D, Lee JE, Weikert S et al. The epidemiology of renal cell carcinoma. Eur Urol 2011; 60: 615–621.

    Article  PubMed  Google Scholar 

  2. Motzer RJ, Bander NH, Nanus DM . Renal-cell carcinoma. N Engl J Med 1996; 335: 865–875.

    Article  CAS  PubMed  Google Scholar 

  3. Ljungberg B, Bensalah K, Canfield S, Dabestani S, Hofmann F, Hora M et al. EAU guidelines on renal cell carcinoma: 2014 update. Eur Urol 2015; 67: 913–924.

    Article  PubMed  Google Scholar 

  4. Patil S, Manola J, Elson P, Negrier S, Escudier B, Eisen T et al. Improvement in overall survival of patients with advanced renal cell carcinoma: prognostic factor trend analysis from an international data set of clinical trials. J Urol 2012; 188: 2095–2100.

    Article  PubMed  Google Scholar 

  5. Abe H, Kamai T . Recent advances in the treatment of metastatic renal cell carcinoma. Int J Urol 2013; 20: 944–955.

    CAS  PubMed  Google Scholar 

  6. Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 2007; 356: 125–134.

    Article  CAS  PubMed  Google Scholar 

  7. Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 2004; 64: 7099–7109.

    Article  CAS  PubMed  Google Scholar 

  8. Ye DW, Zhang HL . Critical appraisal of sorafenib in the treatment of Chinese patients with renal cell carcinoma. Onco Targets Ther 2014; 7: 925–935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Heng DY, Mackenzie MJ, Vaishampayan UN, Bjarnason GA, Knox JJ, Tan MH et al. Primary anti-vascular endothelial growth factor (VEGF)-refractory metastatic renal cell carcinoma: clinical characteristics, risk factors, and subsequent therapy. Ann Oncol 2012; 23: 1549–1555.

    Article  CAS  PubMed  Google Scholar 

  10. Powles T, Staehler M, Ljungberg B, Bensalah K, Canfield SE, Dabestani S et al. Updated EAU Guidelines for clear cell renal cancer patients who fail VEGF targeted therapy. Eur Urol 2016; 69: 4–6.

    Article  PubMed  Google Scholar 

  11. Mercer TR, Dinger ME, Mattick JS . Long non-coding RNAs: insights into functions. Nat Rev Genet 2009; 10: 155–159.

    Article  CAS  PubMed  Google Scholar 

  12. Geisler S, Coller J . RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat Rev Mol Cell Biol 2013; 14: 699–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wilusz JE, Sunwoo H, Spector DL . Long noncoding RNAs: functional surprises from the RNA world. Genes Dev 2009; 23: 1494–1504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pang KC, Frith MC, Mattick JS . Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function. Trends Genet 2006; 22: 1–5.

    Article  CAS  PubMed  Google Scholar 

  15. Martens-Uzunova ES, Bottcher R, Croce CM, Jenster G, Visakorpi T, Calin GA . Long noncoding RNA in prostate, bladder, and kidney cancer. Eur Urol 2014; 65: 1140–1151.

    Article  CAS  PubMed  Google Scholar 

  16. Hirata H, Hinoda Y, Shahryari V, Deng G, Nakajima K, Tabatabai ZL et al. Long noncoding RNA MALAT1 promotes aggressive renal cell carcinoma through Ezh2 and interacts with miR-205. Cancer Res 2015; 75: 1322–1331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sotillo E, Thomas-Tikhonenko A . The long reach of noncoding RNAs. Nat Genet 2011; 43: 616–617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Prensner JR, Chinnaiyan AM . The emergence of lncRNAs in cancer biology. Cancer Discov 2011; 1: 391–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shi SJ, Wang LJ, Yu B, Li YH, Jin Y, Bai XZ . LncRNA-ATB promotes trastuzumab resistance and invasion-metastasis cascade in breast cancer. Oncotarget 2015; 6: 11652–11663.

    PubMed  PubMed Central  Google Scholar 

  20. Liu J, Wan L, Lu K, Sun M, Pan X, Zhang P et al. The long noncoding RNA MEG3 contributes to cisplatin resistance of human lung adenocarcinoma. PloS One 2015; 10: e0114586.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kong J, Kong F, Gao J, Zhang Q, Dong S, Gu F et al. YC-1 enhances the anti-tumor activity of sorafenib through inhibition of signal transducer and activator of transcription 3 (STAT3) in hepatocellular carcinoma. Mol Cancer 2014; 13: 7.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Liang Y, Zheng T, Song R, Wang J, Yin D, Wang L et al. Hypoxia-mediated sorafenib resistance can be overcome by EF24 through Von Hippel-Lindau tumor suppressor-dependent HIF-1alpha inhibition in hepatocellular carcinoma. Hepatology (Baltimore, MD) 2013; 57: 1847–1857.

    Article  CAS  Google Scholar 

  23. Banfai B, Jia H, Khatun J, Wood E, Risk B, Gundling WE Jr et al. Long noncoding RNAs are rarely translated in two human cell lines. Genome Res 2012; 22: 1646–1657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Prensner JR, Iyer MK, Balbin OA, Dhanasekaran SM, Cao Q, Brenner JC et al. Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nat Biotechnol 2011; 29: 742–749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lin MF, Jungreis I, Kellis M . PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions. Bioinformatics 2011; 27: i275–i282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chandarlapaty S . Negative feedback and adaptive resistance to the targeted therapy of cancer. Cancer Discov 2012; 2: 311–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK, Munson G et al. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 2011; 477: 295–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 2010; 329: 689–693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Karin M, Greten FR . NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 2005; 5: 749–759.

    Article  CAS  PubMed  Google Scholar 

  30. Hayden MS, Ghosh S . Shared principles in NF-kappaB signaling. Cell 2008; 132: 344–362.

    Article  CAS  PubMed  Google Scholar 

  31. Ozturk G, Ginis Z, Akyol S, Erden G, Gurel A, Akyol O . The anticancer mechanism of caffeic acid phenethyl ester (CAPE): review of melanomas, lung and prostate cancers. Eur Rev Med Pharmacol Sci 2012; 16: 2064–2068.

    CAS  PubMed  Google Scholar 

  32. Iliopoulos D, Hirsch HA, Struhl K . An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 2009; 139: 693–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Grivennikov S, Karin M . Autocrine IL-6 signaling: a key event in tumorigenesis? Cancer Cell 2008; 13: 7–9.

    Article  CAS  PubMed  Google Scholar 

  34. Yu H, Lee H, Herrmann A, Buettner R, Jove R . Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer 2014; 14: 736–746.

    Article  CAS  PubMed  Google Scholar 

  35. Kharaziha P, Rodriguez P, Li Q, Rundqvist H, Bjorklund AC, Augsten M et al. Targeting of distinct signaling cascades and cancer-associated fibroblasts define the efficacy of sorafenib against prostate cancer cells. Cell Death Dis 2012; 3: e262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu B, Sun L, Liu Q, Gong C, Yao Y, Lv X et al. A cytoplasmic NF-kappaB interacting long noncoding RNA blocks IkappaB phosphorylation and suppresses breast cancer metastasis. Cancer Cell 2015; 27: 370–381.

    Article  CAS  PubMed  Google Scholar 

  37. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 2009; 45: 228–247.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Feng Liu and Qifei Tao for editing this manuscript. This study was supported by grants from the National Natural Science Foundation of China (81272817, 81472691 and 81572521), the Leading Talent Project of Shanghai (2013046) and Youth Talent Sailing Program of Shanghai Science and Technology Committee (16YF1403600).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S Sun, L Qu or L Wang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Z., Yang, F., Wei, D. et al. Long noncoding RNA-SRLR elicits intrinsic sorafenib resistance via evoking IL-6/STAT3 axis in renal cell carcinoma. Oncogene 36, 1965–1977 (2017). https://doi.org/10.1038/onc.2016.356

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.356

This article is cited by

Search

Quick links