Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

HDAC1 and HDAC2 integrate the expression of p53 mutants in pancreatic cancer

Abstract

Mutation of p53 is a frequent genetic lesion in pancreatic cancer being an unmet clinical challenge. Mutants of p53 have lost the tumour-suppressive functions of wild type p53. In addition, p53 mutants exert tumour-promoting functions, qualifying them as important therapeutic targets. Here, we show that the class I histone deacetylases HDAC1 and HDAC2 contribute to maintain the expression of p53 mutants in human and genetically defined murine pancreatic cancer cells. Our data reveal that the inhibition of these HDACs with small molecule HDAC inhibitors (HDACi), as well as the specific genetic elimination of HDAC1 and HDAC2, reduce the expression of mutant p53 mRNA and protein levels. We further show that HDAC1, HDAC2 and MYC directly bind to the TP53 gene and that MYC recruitment drops upon HDAC inhibitor treatment. Therefore, our results illustrate a previously unrecognized class I HDAC-dependent control of the TP53 gene and provide evidence for a contribution of MYC. A combined approach targeting HDAC1/HDAC2 and MYC may present a novel and molecularly defined strategy to target mutant p53 in pancreatic cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM . Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 2014; 74: 2913–2921.

    Article  CAS  PubMed  Google Scholar 

  2. Chang DK, Grimmond SM, Biankin AV . Pancreatic cancer genomics. Curr Opin Genet Dev 2014; 24: 74–81.

    Article  CAS  PubMed  Google Scholar 

  3. Muller PA, Vousden KH . Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell 2014; 25: 304–317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Oren M, Rotter V . Mutant p53 gain-of-function in cancer. Cold Spring Harb Perspect Biol 2010; 2: a001107.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Freed-Pastor WA, Prives C . Mutant p53: one name, many proteins. Genes Dev 2012; 26: 1268–1286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Muller PA, Vousden KH . p53 mutations in cancer. Nat Cell Biol 2013; 15: 2–8.

    Article  CAS  PubMed  Google Scholar 

  7. Olive KP, Tuveson DA, Ruhe ZC, Yin B, Willis NA, Bronson RT et al. Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 2004; 119: 847–860.

    Article  CAS  PubMed  Google Scholar 

  8. Doyle B, Morton JP, Delaney DW, Ridgway RA, Wilkins JA, Sansom OJ . p53 mutation and loss have different effects on tumourigenesis in a novel mouse model of pleomorphic rhabdomyosarcoma. J Pathol 2010; 222: 129–137.

    Article  CAS  PubMed  Google Scholar 

  9. Hanel W, Marchenko N, Xu S, Yu SX, Weng W, Moll U . Two hot spot mutant p53 mouse models display differential gain of function in tumorigenesis. Cell Death Differ 2013; 20: 898–909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Alexandrova EM, Yallowitz AR, Li D, Xu S, Schulz R, Proia DA et al. Improving survival by exploiting tumour dependence on stabilized mutant p53 for treatment. Nature 2015; 523: 352–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schneider G, Henrich A, Greiner G, Wolf V, Lovas A, Wieczorek M et al. Cross talk between stimulated NF-kappaB and the tumor suppressor p53. Oncogene 2010; 29: 2795–2806.

    Article  CAS  PubMed  Google Scholar 

  12. Schneider G, Krämer OH . NFkappaB/p53 crosstalk-a promising new therapeutic target. Biochim Biophys Acta 2011; 1815: 90–103.

    CAS  PubMed  Google Scholar 

  13. Fiorini C, Cordani M, Padroni C, Blandino G, Di Agostino S, Donadelli M . Mutant p53 stimulates chemoresistance of pancreatic adenocarcinoma cells to gemcitabine. Biochim Biophys Acta 2015; 1853: 89–100.

    Article  CAS  PubMed  Google Scholar 

  14. Cooks T, Pateras IS, Tarcic O, Solomon H, Schetter AJ, Wilder S et al. Mutant p53 prolongs NF-kappaB activation and promotes chronic inflammation and inflammation-associated colorectal cancer. Cancer Cell 2013; 23: 634–646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Morton JP, Timpson P, Karim SA, Ridgway RA, Athineos D, Doyle B et al. Mutant p53 drives metastasis and overcomes growth arrest/senescence in pancreatic cancer. Proc Natl Acad Sci USA 2010; 107: 246–251.

    Article  CAS  PubMed  Google Scholar 

  16. Weissmueller S, Manchado E, Saborowski M, Morris JPt, Wagenblast E, Davis CA et al. Mutant p53 drives pancreatic cancer metastasis through cell-autonomous PDGF receptor beta signaling. Cell 2014; 157: 382–394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Timpson P, McGhee EJ, Morton JP, von Kriegsheim A, Schwarz JP, Karim SA et al. Spatial regulation of RhoA activity during pancreatic cancer cell invasion driven by mutant p53. Cancer Res 2011; 71: 747–757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Buchwald M, Krämer OH, Heinzel T . HDACi – targets beyond chromatin. Cancer Lett 2009; 280: 160–167.

    Article  CAS  PubMed  Google Scholar 

  19. Fritsche P, Seidler B, Schüler S, Schnieke A, Göttlicher M, Schmid RM et al. HDAC2 mediates therapeutic resistance of pancreatic cancer cells via the BH3-only protein NOXA. Gut 2009; 58: 1399–1409.

    Article  CAS  PubMed  Google Scholar 

  20. Lehmann A, Denkert C, Budczies J, Buckendahl AC, Darb-Esfahani S, Noske A et al. High class I HDAC activity and expression are associated with RelA/p65 activation in pancreatic cancer in vitro and in vivo. BMC Cancer 2009; 9: 395.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Marshall GM, Gherardi S, Xu N, Neiron Z, Trahair T, Scarlett CJ et al. Transcriptional upregulation of histone deacetylase 2 promotes Myc-induced oncogenic effects. Oncogene 2010; 29: 5957–5968.

    Article  CAS  PubMed  Google Scholar 

  22. Ouaissi M, Silvy F, Loncle C, Ferraz da Silva D, Martins Abreu C, Martinez E et al. Further characterization of HDAC and SIRT gene expression patterns in pancreatic cancer and their relation to disease outcome. PLoS One 2014; 9: e108520.

    Article  PubMed  PubMed Central  Google Scholar 

  23. von Burstin J, Eser S, Paul MC, Seidler B, Brandl M, Messer M et al. E-cadherin regulates metastasis of pancreatic cancer in vivo and is suppressed by a SNAIL/HDAC1/HDAC2 repressor complex. Gastroenterology 2009; 137: 361–371 371 e361–365.

    Article  CAS  PubMed  Google Scholar 

  24. Aghdassi A, Sendler M, Guenther A, Mayerle J, Behn CO, Heidecke CD et al. Recruitment of histone deacetylases HDAC1 and HDAC2 by the transcriptional repressor ZEB1 downregulates E-cadherin expression in pancreatic cancer. Gut 2012; 61: 439–448.

    Article  CAS  PubMed  Google Scholar 

  25. Schüler S, Fritsche P, Diersch S, Arlt A, Schmid RM, Saur D et al. HDAC2 attenuates TRAIL-induced apoptosis of pancreatic cancer cells. Mol Cancer 2010; 9: 80.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Peulen O, Gonzalez A, Peixoto P, Turtoi A, Mottet D, Delvenne P et al. The anti-tumor effect of HDAC inhibition in a human pancreas cancer model is significantly improved by the simultaneous inhibition of cyclooxygenase 2. PLoS One 2013; 8: e75102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Donadelli M, Costanzo C, Beghelli S, Scupoli MT, Dandrea M, Bonora A et al. Synergistic inhibition of pancreatic adenocarcinoma cell growth by trichostatin A and gemcitabine. Biochim Biophys Acta 2007; 1773: 1095–1106.

    Article  CAS  PubMed  Google Scholar 

  28. Piacentini P, Donadelli M, Costanzo C, Moore PS, Palmieri M, Scarpa A . Trichostatin A enhances the response of chemotherapeutic agents in inhibiting pancreatic cancer cell proliferation. Virchows Arch 2006; 448: 797–804.

    Article  CAS  PubMed  Google Scholar 

  29. Yan W, Liu S, Xu E, Zhang J, Zhang Y, Chen X et al. Histone deacetylase inhibitors suppress mutant p53 transcription via histone deacetylase 8. Oncogene 2013; 32: 599–609.

    Article  CAS  PubMed  Google Scholar 

  30. Wang ZT, Chen ZJ, Jiang GM, Wu YM, Liu T, Yi YM et al. Histone deacetylase inhibitors suppress mutant p53 transcription via HDAC8/YY1 signals in triple negative breast cancer cells. Cell Signal 2016; 28: 506–515.

    Article  CAS  PubMed  Google Scholar 

  31. Li D, Marchenko ND, Moll UM . SAHA shows preferential cytotoxicity in mutant p53 cancer cells by destabilizing mutant p53 through inhibition of the HDAC6-Hsp90 chaperone axis. Cell Death Differ 2011; 18: 1904–1913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bradner JE, West N, Grachan ML, Greenberg EF, Haggarty SJ, Warnow T et al. Chemical phylogenetics of histone deacetylases. Nat Chem Biol 2010; 6: 238–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bradner JE, Mak R, Tanguturi SK, Mazitschek R, Haggarty SJ, Ross K et al. Chemical genetic strategy identifies histone deacetylase 1 (HDAC1) and HDAC2 as therapeutic targets in sickle cell disease. Proc Natl Acad Sci USA 2010; 107: 12617–12622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bantscheff M, Hopf C, Savitski MM, Dittmann A, Grandi P, Michon AM et al. Chemoproteomics profiling of HDAC inhibitors reveals selective targeting of HDAC complexes. Nat Biotechnol 2011; 29: 255–265.

    Article  CAS  PubMed  Google Scholar 

  35. Lauffer BE, Mintzer R, Fong R, Mukund S, Tam C, Zilberleyb I et al. Histone deacetylase (HDAC) inhibitor kinetic rate constants correlate with cellular histone acetylation but not transcription and cell viability. J Biol Chem 2013; 288: 26926–26943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sui X, Shin S, Zhang R, Firozi PF, Yang L, Abbruzzese JL et al. Hdm2 is regulated by K-Ras and mediates p53-independent functions in pancreatic cancer cells. Oncogene 2009; 28: 709–720.

    Article  CAS  PubMed  Google Scholar 

  37. Conradt L, Henrich A, Wirth M, Reichert M, Lesina M, Algul H et al. Mdm2 inhibitors synergize with topoisomerase II inhibitors to induce p53-independent pancreatic cancer cell death. Int J Cancer 2013; 132: 2248–2257.

    Article  CAS  PubMed  Google Scholar 

  38. Azmi AS, Aboukameel A, Banerjee S, Wang Z, Mohammad M, Wu J et al. MDM2 inhibitor MI-319 in combination with cisplatin is an effective treatment for pancreatic cancer independent of p53 function. Eur J Cancer 2010; 46: 1122–1131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Terzian T, Suh YA, Iwakuma T, Post SM, Neumann M, Lang GA et al. The inherent instability of mutant p53 is alleviated by Mdm2 or p16INK4a loss. Genes Dev 2008; 22: 1337–1344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li Y, Guessous F, Kwon S, Kumar M, Ibidapo O, Fuller L et al. PTEN has tumor-promoting properties in the setting of gain-of-function p53 mutations. Cancer Res 2008; 68: 1723–1731.

    Article  CAS  PubMed  Google Scholar 

  41. Lukashchuk N, Vousden KH . Ubiquitination and degradation of mutant p53. Mol Cell Biol 2007; 27: 8284–8295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hamilton G, Abraham AG, Morton J, Sampson O, Pefani DE, Khoronenkova S et al. AKT regulates NPM dependent ARF localization and p53mut stability in tumors. Oncotarget 2014; 5: 6142–6167.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Mahboobi S, Sellmer A, Pongratz H, Leonardt M, Krämer O, Böhmer FD et al. Preparation of fused heterocyclic compounds as HDAC6 inhibitors and their uses. PCT Int Appl 2016, WO 2016020369 A1.

  44. Shortt J, Hsu AK, Martin BP, Doggett K, Matthews GM, Doyle MA et al. The drug vehicle and solvent N-methylpyrrolidone is an immunomodulator and antimyeloma compound. Cell Rep 2014; 7: 1009–1019.

    Article  CAS  PubMed  Google Scholar 

  45. Matthews GM, Lefebure M, Doyle MA, Shortt J, Ellul J, Chesi M et al. Preclinical screening of histone deacetylase inhibitors combined with ABT-737, rhTRAIL/MD5-1 or 5-azacytidine using syngeneic Vk*MYC multiple myeloma. Cell Death Dis 2013; 4: e798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 2003; 4: 437–450.

    Article  CAS  PubMed  Google Scholar 

  47. Schönhuber N, Seidler B, Schuck K, Veltkamp C, Schachtler C, Zukowska M et al. A next-generation dual-recombinase system for time- and host-specific targeting of pancreatic cancer. Nat Med 2014; 20: 1340–1347.

    PubMed Central  PubMed  Google Scholar 

  48. Diersch S, Wirth M, Schneeweis C, Jors S, Geisler F, Siveke JT et al. Kras induces EGFR-MYC cross signaling in murine primary pancreatic ductal epithelial cells. Oncogene 2016; 35: 3880–3886.

    Article  CAS  PubMed  Google Scholar 

  49. Saldana-Meyer R, Recillas-Targa F . Transcriptional and epigenetic regulation of the p53 tumor suppressor gene. Epigenetics 2011; 6: 1068–1077.

    Article  CAS  PubMed  Google Scholar 

  50. Kubicek S, Gilbert JC, Fomina-Yadlin D, Gitlin AD, Yuan Y, Wagner FF et al. Chromatin-targeting small molecules cause class-specific transcriptional changes in pancreatic endocrine cells. Proc Natl Acad Sci USA 2012; 109: 5364–5369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jamaladdin S, Kelly RD, O'Regan L, Dovey OM, Hodson GE, Millard CJ et al. Histone deacetylase (HDAC) 1 and 2 are essential for accurate cell division and the pluripotency of embryonic stem cells. Proc Natl Acad Sci USA 2014; 111: 9840–9845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zeller KI, Jegga AG, Aronow BJ, O'Donnell KA, Dang CV . An integrated database of genes responsive to the Myc oncogenic transcription factor: identification of direct genomic targets. Genome Biol 2003; 4: R69.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Heller G, Schmidt WM, Ziegler B, Holzer S, Mullauer L, Bilban M et al. Genome-wide transcriptional response to 5-aza-2'-deoxycytidine and trichostatin a in multiple myeloma cells. Cancer Res 2008; 68: 44–54.

    Article  CAS  PubMed  Google Scholar 

  54. Yin X, Giap C, Lazo JS, Prochownik EV . Low molecular weight inhibitors of Myc-Max interaction and function. Oncogene 2003; 22: 6151–6159.

    Article  CAS  PubMed  Google Scholar 

  55. Sonnemann J, Marx C, Becker S, Wittig S, Palani CD, Kramer OH et al. p53-dependent and p53-independent anticancer effects of different histone deacetylase inhibitors. Br J Cancer 2014; 110: 656–667.

    Article  CAS  PubMed  Google Scholar 

  56. Peltonen K, Kiviharju TM, Jarvinen PM, Ra R, Laiho M . Melanoma cell lines are susceptible to histone deacetylase inhibitor TSA provoked cell cycle arrest and apoptosis. Pigment Cell Res 2005; 18: 196–202.

    Article  CAS  PubMed  Google Scholar 

  57. Sachweh MC, Drummond CJ, Higgins M, Campbell J, Lain S . Incompatible effects of p53 and HDAC inhibition on p21 expression and cell cycle progression. Cell Death Dis 2013; 4: e533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yu X, Guo ZS, Marcu MG, Neckers L, Nguyen DM, Chen GA et al. Modulation of p53, ErbB1, ErbB2, and Raf-1 expression in lung cancer cells by depsipeptide FR901228. J Natl Cancer Inst 2002; 94: 504–513.

    Article  CAS  PubMed  Google Scholar 

  59. Wang Z, Zang C, Cui K, Schones DE, Barski A, Peng W et al. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 2009; 138: 1019–1031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kidder BL, Palmer S . HDAC1 regulates pluripotency and lineage specific transcriptional networks in embryonic and trophoblast stem cells. Nucleic Acids Res 2012; 40: 2925–2939.

    Article  CAS  PubMed  Google Scholar 

  61. Dovey OM, Foster CT, Cowley SM . Emphasizing the positive: A role for histone deacetylases in transcriptional activation. Cell Cycle 2010; 9: 2700–2701.

    Article  CAS  PubMed  Google Scholar 

  62. Kim YJ, Greer CB, Cecchini KR, Harris LN, Tuck DP, Kim TH . HDAC inhibitors induce transcriptional repression of high copy number genes in breast cancer through elongation blockade. Oncogene 2013; 32: 2828–2835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Greer CB, Tanaka Y, Kim YJ, Xie P, Zhang MQ, Park IH et al. Histone deacetylases positively regulate transcription through the elongation machinery. Cell Rep 2015; 13: 1444–1455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Reed SM, Quelle DE . p53 acetylation: regulation and consequences. Cancers (Basel) 2014; 7: 30–69.

    Article  Google Scholar 

  65. Wagner T, Brand P, Heinzel T, Krämer OH . Histone deacetylase 2 controls p53 and is a critical factor in tumorigenesis. Biochim Biophys Acta 2014; 1846: 524–538.

    CAS  PubMed  Google Scholar 

  66. Saborowski M, Saborowski A, JPt Morris, Bosbach B, Dow LE, Pelletier J et al. A modular and flexible ESC-based mouse model of pancreatic cancer. Genes Dev 2014; 28: 85–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Walz S, Lorenzin F, Morton J, Wiese KE, von Eyss B, Herold S et al. Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles. Nature 2014; 511: 483–487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mazur PK, Herner A, Mello SS, Wirth M, Hausmann S, Sanchez-Rivera FJ et al. Combined inhibition of BET family proteins and histone deacetylases as a potential epigenetics-based therapy for pancreatic ductal adenocarcinoma. Nat Med 2015; 21: 1163–1171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hessmann E, Schneider G, Ellenrieder V, Siveke JT . MYC in pancreatic cancer: novel mechanistic insights and their translation into therapeutic strategies. Oncogene 2016; 35: 1609–1618.

    Article  CAS  PubMed  Google Scholar 

  70. Wirth M, Schneider G . MYC: a stratification marker for pancreatic cancer therapy. Trends in Cancer 2016; 2: 1–3.

    Article  PubMed  Google Scholar 

  71. Wirth M, Mahboobi S, Krämer OH, Schneider G . Concepts to target MYC in pancreatic cancer. Mol Cancer Ther 2016; 15: 1792–1798.

    Article  CAS  PubMed  Google Scholar 

  72. Zappasodi R, Cavane A, Iorio MV, Tortoreto M, Guarnotta C, Ruggiero G et al. Pleiotropic antitumor effects of the pan-HDAC inhibitor ITF2357 against c-Myc-overexpressing human B-cell non-Hodgkin lymphomas. Int J Cancer 2014; 135: 2034–2045.

    Article  CAS  PubMed  Google Scholar 

  73. Labisso WL, Wirth M, Stojanovic N, Stauber RH, Schnieke A, Schmid RM et al. MYC directs transcription of MCL1 and eIF4E genes to control sensitivity of gastric cancer cells toward HDAC inhibitors. Cell Cycle 2012; 11: 1593–1602.

    Article  CAS  PubMed  Google Scholar 

  74. Bhadury J, Nilsson LM, Muralidharan SV, Green LC, Li Z, Gesner EM et al. BET and HDAC inhibitors induce similar genes and biological effects and synergize to kill in Myc-induced murine lymphoma. Proc Natl Acad Sci USA 2014; 111: E2721–E2730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Murakami J, Asaumi J, Kawai N, Tsujigiwa H, Yanagi Y, Nagatsuka H et al. Effects of histone deacetylase inhibitor FR901228 on the expression level of telomerase reverse transcriptase in oral cancer. Cancer Chemother Pharmacol 2005; 56: 22–28.

    Article  CAS  PubMed  Google Scholar 

  76. Kumagai T, Wakimoto N, Yin D, Gery S, Kawamata N, Takai N et al. Histone deacetylase inhibitor, suberoylanilide hydroxamic acid (Vorinostat, SAHA) profoundly inhibits the growth of human pancreatic cancer cells. Int J Cancer 2007; 121: 656–665.

    Article  CAS  PubMed  Google Scholar 

  77. Pei Y, Liu KW, Wang J, Garancher A, Tao R, Esparza LA et al. HDAC and PI3K antagonists cooperate to inhibit growth of MYC-driven medulloblastoma. Cancer Cell 2016; 29: 311–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ronen D, Rotter V, Reisman D . Expression from the murine p53 promoter is mediated by factor binding to a downstream helix-loop-helix recognition motif. Proc Natl Acad Sci USA 1991; 88: 4128–4132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Reisman D, Elkind NB, Roy B, Beamon J, Rotter V . c-Myc trans-activates the p53 promoter through a required downstream CACGTG motif. Cell Growth Differ 1993; 4: 57–65.

    CAS  PubMed  Google Scholar 

  80. Roy B, Beamon J, Balint E, Reisman D . Transactivation of the human p53 tumor suppressor gene by c-Myc/Max contributes to elevated mutant p53 expression in some tumors. Mol Cell Biol 1994; 14: 7805–7815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gui CY, Ngo L, Xu WS, Richon VM, Marks PA . Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1. Proc Natl Acad Sci USA 2004; 101: 1241–1246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Scholz C, Weinert BT, Wagner SA, Beli P, Miyake Y, Qi J et al. Acetylation site specificities of lysine deacetylase inhibitors in human cells. Nat Biotechnol 2015; 33: 415–423.

    Article  CAS  PubMed  Google Scholar 

  83. Geismann C, Grohmann F, Sebens S, Wirths G, Dreher A, Hasler R et al. c-Rel is a critical mediator of NF-kappaB-dependent TRAIL resistance of pancreatic cancer cells. Cell Death Dis 2014; 5: e1455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ossewaarde JM, de Vries A, Bestebroer T, Angulo AF . Application of a mycoplasma group-specific PCR for monitoring decontamination of mycoplasma-infected Chlamydia sp. strains. Appl Environ Microbiol 1996; 62: 328–331.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Wirth M, Fritsche P, Stojanovic N, Brandl M, Jaeckel S, Schmid RM et al. A simple and cost-effective method to transfect small interfering RNAs into pancreatic cancer cell lines using polyethylenimine. Pancreas 2011; 40: 144–150.

    Article  CAS  PubMed  Google Scholar 

  86. Wirth M, Stojanovic N, Christian J, Paul MC, Stauber RH, Schmid RM et al. MYC and EGR1 synergize to trigger tumor cell death by controlling NOXA and BIM transcription upon treatment with the proteasome inhibitor bortezomib. Nucleic Acids Res 2014; 42: 10433–10447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr E. Olson, Dr T. Jacks, Dr A. Lowy, Dr P. Soriano, and Dr D. Tuveson for providing mouse lines. We thank Dr A. Bradley for support and help during the transfer of mouse lines. This work was supported by: Deutsche Krebshilfe [110908 to G.S., 110909 to O.H.K., and 111273 to M.R.], Wilhelm-Sander Stiftung [2016.004.1 to S.M. and G.S., 2010.078.1 to O.H.K], Else Kröner-Fresenius-Stiftung (2016_A43 to M.W.), Deutsche Forschungsgemeinschaft (DFG) [SCHN 959/2-1 to G.S.; SFB824/C9 to G.S. and D.S.; KR 2291/4-1/MA; 2183/1-1 to O.H.K. and S.M., and KR 2291/5-1 to O.H.K.], and DKTK Joint Funding [to R.R., D.S., and G.S.].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O H Krämer or G Schneider.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stojanovic, N., Hassan, Z., Wirth, M. et al. HDAC1 and HDAC2 integrate the expression of p53 mutants in pancreatic cancer. Oncogene 36, 1804–1815 (2017). https://doi.org/10.1038/onc.2016.344

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.344

This article is cited by

Search

Quick links