Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Targeting KRas-dependent tumour growth, circulating tumour cells and metastasis in vivo by clinically significant miR-193a-3p

Abstract

KRas is mutated in a significant number of human cancers and so there is an urgent therapeutic need to target KRas signalling. To target KRas in lung cancers we used a systems approach of integrating a genome-wide miRNA screen with patient-derived phospho-proteomic signatures of the KRas downstream pathway, and identified miR-193a-3p, which directly targets KRas. Unique aspects of miR-193a-3p biology include two functionally independent target sites in the KRas 3′UTR and clinically significant correlation between miR-193a-3p and KRas expression in patients. Rescue experiments with mutated KRas 3’UTR showed very significantly that the anti-tumour effect of miR-193a-3p is via specific direct targeting of KRas and not due to other targets. Ex vivo and in vivo studies utilizing nanoliposome packaged miR-193a-3p demonstrated significant inhibition of tumour growth, circulating tumour cell viability and decreased metastasis. These studies show the broader applicability of using miR-193a-3p as a therapeutic agent to target KRas-mutant cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Jancik S, Drabek J, Radzioch D, Hajduch M . Clinical relevance of KRAS in human cancers. J Biomed Biotechnol 2010; 2010: 150960.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Der CJ, Cooper GM . Altered gene products are associated with activation of cellular rasK genes in human lung and colon carcinomas. Cell 1983; 32: 201–208.

    Article  CAS  PubMed  Google Scholar 

  3. Bos JL . ras oncogenes in human cancer: a review. Cancer Res 1989; 49: 4682–4689.

    CAS  PubMed  Google Scholar 

  4. Uberall I, Kolar Z, Trojanec R, Berkovcova J, Hajduch M . The status and role of ErbB receptors in human cancer. Exp Mol Pathol 2008; 84: 79–89.

    Article  CAS  PubMed  Google Scholar 

  5. Katzel JA, Fanucchi MP, Li Z . Recent advances of novel targeted therapy in non-small cell lung cancer. J Hematol Oncol 2009; 2: 2.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Agarwal A, Eide CA, Harlow A, Corbin AS, Mauro MJ, Druker BJ et al. An activating KRAS mutation in imatinib-resistant chronic myeloid leukemia. Leukemia 2008; 22: 2269–2272.

    Article  CAS  PubMed  Google Scholar 

  7. Lievre A, Bachet JB, Boige V, Cayre A, Le Corre D, Buc E et al. KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J Clin Oncol 2008; 26: 374–379.

    Article  CAS  PubMed  Google Scholar 

  8. Rosell R, Gonzalez-Larriba JL, Alberola V, Molina F, Monzo M, Benito D et al. Single-agent paclitaxel by 3-hour infusion in the treatment of non-small cell lung cancer: links between p53 and K-ras gene status and chemosensitivity. Semin Oncol 1995; 22 (6 Suppl 14): 12–18.

    CAS  PubMed  Google Scholar 

  9. Grana TM, Rusyn EV, Zhou H, Sartor CI, Cox AD . Ras mediates radioresistance through both phosphatidylinositol 3-kinase-dependent and Raf-dependent but mitogen-activated protein kinase/extracellular signal-regulated kinase kinase-independent signaling pathways. Cancer Res 2002; 62: 4142–4150.

    CAS  PubMed  Google Scholar 

  10. Wu SY, Lopez-Berestein G, Calin GA, Sood AK . RNAi therapies: drugging the undruggable. Sci Transl Med 2014; 6: 240ps7.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jiao LR, Frampton AE, Jacob J, Pellegrino L, Krell J, Giamas G et al. MicroRNAs targeting oncogenes are down-regulated in pancreatic malignant transformation from benign tumors. PloS One 2012; 7: e32068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Grechukhina O, Petracco R, Popkhadze S, Massasa E, Paranjape T, Chan E et al. A polymorphism in a let-7 microRNA binding site of KRAS in women with endometriosis. EMBO Mol Med 2012; 4: 206–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Akbani R, Ng PK, Werner HM, Shahmoradgoli M, Zhang F, Ju Z et al. A pan-cancer proteomic perspective on The Cancer Genome Atlas. Nat Commun 2014; 5: 3887.

    Article  CAS  PubMed  Google Scholar 

  14. Zhang W, Nandakumar N, Shi Y, Manzano M, Smith A, Graham G et al. Downstream of mutant KRAS, the transcription regulator YAP is essential for neoplastic progression to pancreatic ductal adenocarcinoma. Sci Signal 2014; 7: ra42.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kalinichenko VV, Kalin TV . Is there potential to target FOXM1 for ‘undruggable’ lung cancers? Expert Opin Ther Targets 2015; 19: 865–867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hong X, Nguyen HT, Chen Q, Zhang R, Hagman Z, Voorhoeve PM et al. Opposing activities of the Ras and Hippo pathways converge on regulation of YAP protein turnover. EMBO J 2014; 33: 2447–2457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cancer Genome Atlas Research N. Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014; 511: 543–550.

    Article  Google Scholar 

  18. Moss TJ, Luo Z, Seviour EG, Sehgal V, Lu Y, Hill SM et al. Genome-wide perturbations by miRNAs map onto functional cellular pathways, identifying regulators of chromatin modifiers. Npj Syst Biol Appl 2015; 1: 15001.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Seviour EG, Sehgal V, Lu Y, Luo Z, Moss T, Zhang F et al. Functional proteomics identifies miRNAs to target a p27/Myc/phospho-Rb signature in breast and ovarian cancer. Oncogene 2015; 35: 801.

    Article  Google Scholar 

  20. Yang JH, Li JH, Shao P, Zhou H, Chen YQ, Qu LH . starBase: a database for exploring microRNA-mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data. Nucleic Acids Res 2011; 39(Database issue): D202–D209.

    Article  CAS  PubMed  Google Scholar 

  21. Lv L, Deng H, Li Y, Zhang C, Liu X, Liu Q et al. The DNA methylation-regulated miR-193a-3p dictates the multi-chemoresistance of bladder cancer via repression of SRSF2/PLAU/HIC2 expression. Cell Death Dis 2014; 5: e1402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Heller G, Weinzierl M, Noll C, Babinsky V, Ziegler B, Altenberger C et al. Genome-wide miRNA expression profiling identifies miR-9-3 and miR-193a as targets for DNA methylation in non-small cell lung cancers. Clin Cancer Res 2012; 18: 1619–1629.

    Article  CAS  PubMed  Google Scholar 

  23. Iliopoulos D, Rotem A, Struhl K . Inhibition of miR-193a expression by Max and RXRalpha activates K-Ras and PLAU to mediate distinct aspects of cellular transformation. Cancer Res 2011; 71: 5144–5153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Komurov K, Dursun S, Erdin S, Ram PT . NetWalker: a contextual network analysis tool for functional genomics. BMC Genomics 2012; 13: 282.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Komurov K, White M, Ram PT . Use of data-biased random walks on graphs for the retrieval of context-specific networks from genomic data. PLoS Comput Biol 2010; 6: pii: e1000889.

    Article  Google Scholar 

  26. Mishra DK, Thrall MJ, Baird BN, Ott HC, Blackmon SH, Kurie JM et al. Human lung cancer cells grown on acellular rat lung matrix create perfusable tumor nodules. Ann Thorac Surg 2012; 93: 1075–1081.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mishra DK, Creighton CJ, Zhang Y, Chen F, Thrall MJ, Kim MP . Ex vivo four-dimensional lung cancer model mimics metastasis. Ann Thorac Surg 2015; 99: 1149–1156.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Li CX, Parker A, Menocal E, Xiang S, Borodyansky L, Fruehauf JH . Delivery of RNA interference. Cell Cycle 2006; 5: 2103–2109.

    Article  CAS  PubMed  Google Scholar 

  29. Li J, Lu Y, Akbani R, Ju Z, Roebuck PL, Liu W et al. TCPA: a resource for cancer functional proteomics data. Nat Methods 2013; 10: 1046–1047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cancer Genome Atlas N. Comprehensive molecular portraits of human breast tumours. Nature 2012; 490: 61–70.

    Article  Google Scholar 

  31. Cancer Genome Atlas N.. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012; 487: 330–337.

    Article  Google Scholar 

  32. Cancer Genome Atlas Research N. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008; 455: 1061–1068.

    Article  Google Scholar 

  33. Cancer Genome Atlas Research N. Integrated genomic analyses of ovarian carcinoma. Nature 2011; 474: 609–615.

    Article  Google Scholar 

  34. Cancer Genome Atlas Research N. Comprehensive genomic characterization of squamous cell lung cancers. Nature 2012; 489: 519–525.

    Article  Google Scholar 

  35. Supek F, Bosnjak M, Skunca N, Smuc T . REVIGO summarizes and visualizes long lists of gene ontology terms. PloS One 2011; 6: e21800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mishra DK, Sakamoto JH, Thrall MJ, Baird BN, Blackmon SH, Ferrari M et al. Human lung cancer cells grown in an ex vivo 3D lung model produce matrix metalloproteinases not produced in 2D culture. PloS One 2012; 7: e45308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

All the data reported in the paper are presented. The microarray data are available from GEO under the accession number GSE73194. The work presented here was funded by NIH/NCI ICBP grant U54-CA112970 (Project 2 PI-JWG, Project 4 Co-PI’s PTR and GBM), VS was funded by the CCBTP training grant from the CPRIT, and grants from the NIH (UH2 TR000943), the RGK Foundation, and CPRIT RP110595 (AKS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P T Ram.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seviour, E., Sehgal, V., Mishra, D. et al. Targeting KRas-dependent tumour growth, circulating tumour cells and metastasis in vivo by clinically significant miR-193a-3p. Oncogene 36, 1339–1350 (2017). https://doi.org/10.1038/onc.2016.308

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.308

This article is cited by

Search

Quick links