Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Sustained p16INK4a expression is required to prevent IR-induced tumorigenesis in mice

Subjects

Abstract

Exposure of murine and human tissues to ionizing radiation (IR) induces the expression of p16INK4a, a tumor suppressor gene and senescence/aging biomarker. Increased p16INK4a expression is often delayed several weeks post exposure to IR. In this context, it remains unclear if it occurs to suppress aberrant cellular growth of potentially transformed cells or is simply a result of IR-induced loss of tissue homeostasis. To address this question, we used a conditional p16INK4a null mouse model and determined the impact of p16INK4a inactivation long-term post exposure to IR. We found that, in vitro, bone marrow stromal cells exposed to IR enter DNA replication following p16INK4a inactivation. However, these cells did not resume growth; instead, they mostly underwent cell cycle arrest in G2. Similarly, delayed inactivation of p16INK4a in mice several weeks post exposure to IR resulted in increased BrdU incorporation and cancer incidence. In fact, we found that the onset of tumorigenesis was similar whether p16INK4a was inactivated before or after exposure to IR. Overall, our results suggest that IR-induced p16INK4a dependent growth arrest is reversible in mice and that sustained p16INK4a expression is necessary to protect against tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Le ON, Rodier F, Fontaine F, Coppe JP, Campisi J, DeGregori J et al. Ionizing radiation-induced long-term expression of senescence markers in mice is independent of p53 and immune status. Aging Cell 2010; 9: 398–409.

    Article  CAS  Google Scholar 

  2. Wang Y, Schulte BA, LaRue AC, Ogawa M, Zhou D . Total body irradiation selectively induces murine hematopoietic stem cell senescence. Blood 2006; 107: 358–366.

    Article  CAS  Google Scholar 

  3. Marcoux S, Le ON, Langlois-Pelletier C, Laverdiere C, Hatami A, Robaey P et al. Expression of the senescence marker p16INK4a in skin biopsies of acute lymphoblastic leukemia survivors: a pilot study. Radiat Oncol 2013; 8: 252.

    Article  Google Scholar 

  4. Sanoff HK, Deal AM, Krishnamurthy J, Torrice C, Dillon P, Sorrentino J et al. Effect of cytotoxic chemotherapy on markers of molecular age in patients with breast cancer. J Natl Cancer Inst 2014; 106: dju057.

    Article  Google Scholar 

  5. Salama R, Sadaie M, Hoare M, Narita M . Cellular senescence and its effector programs. Genes Dev 2014; 28: 99–114.

    Article  CAS  Google Scholar 

  6. Burd CE, Sorrentino JA, Clark KS, Darr DB, Krishnamurthy J, Deal AM et al. Monitoring tumorigenesis and senescence in vivo with a p16(INK4a)-luciferase model. Cell 2013; 152: 340–351.

    Article  CAS  Google Scholar 

  7. Sorrentino JA, Krishnamurthy J, Tilley S, Alb JG Jr., Burd CE, Sharpless NE . p16INK4a reporter mice reveal age-promoting effects of environmental toxicants. J Clin Invest 2014; 124: 169–173.

    Article  CAS  Google Scholar 

  8. Yamakoshi K, Takahashi A, Hirota F, Nakayama R, Ishimaru N, Kubo Y et al. Real-time in vivo imaging of p16Ink4a reveals cross talk with p53. J Cell Biol 2009; 186: 393–407.

    Article  CAS  Google Scholar 

  9. Serrano M, Lee H, Chin L, Cordon-Cardo C, Beach D, DePinho RA . Role of the INK4a locus in tumor suppression and cell mortality. Cell 1996; 85: 27–37.

    Article  CAS  Google Scholar 

  10. Sharpless NE, Bardeesy N, Lee KH, Carrasco D, Castrillon DH, Aguirre AJ et al. Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 2001; 413: 86–91.

    Article  CAS  Google Scholar 

  11. Sherr CJ, Roberts JM . CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999; 13: 1501–1512.

    Article  CAS  Google Scholar 

  12. Zhou BB, Elledge SJ . The DNA damage response: putting checkpoints in perspective. Nature 2000; 408: 433–439.

    Article  CAS  Google Scholar 

  13. Johmura Y, Shimada M, Misaki T, Naiki-Ito A, Miyoshi H, Motoyama N et al. Necessary and sufficient role for a mitosis skip in senescence induction. Mol Cell 2014; 55: 73–84.

    Article  CAS  Google Scholar 

  14. Stein GH, Drullinger LF, Soulard A, Dulic V . Differential roles for cyclin-dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts. Mol Cell Biol 1999; 19: 2109–2117.

    Article  CAS  Google Scholar 

  15. Robles SJ, Adami GR . Agents that cause DNA double strand breaks lead to p16INK4a enrichment and the premature senescence of normal fibroblasts. Oncogene 1998; 16: 1113–1123.

    Article  CAS  Google Scholar 

  16. Beausejour CM, Krtolica A, Galimi F, Narita M, Lowe SW, Yaswen P et al. Reversal of human cellular senescence: roles of the p53 and p16 pathways. Embo J 2003; 22: 4212–4222.

    Article  CAS  Google Scholar 

  17. Ito K, Hirao A, Arai F, Matsuoka S, Takubo K, Hamaguchi I et al. Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 2004; 431: 997–1002.

    Article  CAS  Google Scholar 

  18. Ito K, Hirao A, Arai F, Takubo K, Matsuoka S, Miyamoto K et al. Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med 2006; 12: 446–451.

    Article  CAS  Google Scholar 

  19. Janzen V, Forkert R, Fleming HE, Saito Y, Waring MT, Dombkowski DM et al. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 2006; 443: 421–426.

    Article  CAS  Google Scholar 

  20. Krishnamurthy J, Ramsey MR, Ligon KL, Torrice C, Koh A, Bonner-Weir S et al. p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 2006; 443: 453–457.

    Article  CAS  Google Scholar 

  21. Molofsky AV, Slutsky SG, Joseph NM, He S, Pardal R, Krishnamurthy J et al. Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 2006; 443: 448–452.

    Article  CAS  Google Scholar 

  22. Sousa-Victor P, Gutarra S, Garcia-Prat L, Rodriguez-Ubreva J, Ortet L, Ruiz-Bonilla V et al. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature 2014; 506: 316–321.

    Article  CAS  Google Scholar 

  23. van Deursen JM . The role of senescent cells in ageing. Nature 2014; 509: 439–446.

    Article  CAS  Google Scholar 

  24. Christophorou MA, Ringshausen I, Finch AJ, Swigart LB, Evan GI . The pathological response to DNA damage does not contribute to p53-mediated tumour suppression. Nature 2006; 443: 214–217.

    Article  CAS  Google Scholar 

  25. Parrinello S, Samper E, Krtolica A, Goldstein J, Melov S, Campisi J . Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol 2003; 5: 741–747.

    Article  CAS  Google Scholar 

  26. Ruzankina Y, Pinzon-Guzman C, Asare A, Ong T, Pontano L, Cotsarelis G et al. Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss. Cell Stem Cell 2007; 1: 113–126.

    Article  CAS  Google Scholar 

  27. Carbonneau CL, Despars G, Rojas-Sutterlin S, Fortin A, Le O, Hoang T et al. Ionizing radiation-induced expression of INK4a/ARF in murine bone marrow-derived stromal cell populations interferes with bone marrow homeostasis. Blood 2012; 119: 717–726.

    Article  CAS  Google Scholar 

  28. Hinkal G, Parikh N, Donehower LA . Timed somatic deletion of p53 in mice reveals age-associated differences in tumor progression. PLoS One 2009; 4: e6654.

    Article  Google Scholar 

  29. Dirac AM, Bernards R . Reversal of senescence in mouse fibroblasts through lentiviral suppression of p53. J Biol Chem 2003; 278: 11731–11734.

    Article  CAS  Google Scholar 

  30. Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 2008; 6: 2853–2868.

    Article  CAS  Google Scholar 

  31. Krtolica A, Parrinello S, Lockett S, Desprez PY, Campisi J . Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci USA 2001; 98: 12072–12077.

    Article  CAS  Google Scholar 

  32. Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 2011; 479: 232–236.

    Article  CAS  Google Scholar 

  33. Demaria M, Ohtani N, Youssef SA, Rodier F, Toussaint W, Mitchell JR et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell 2014; 31: 722–733.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the members of Dr Elie Haddad’s laboratory, flow cytometry and animal facility for providing technical support. We also would like to thank Dr Francis Rodier and Mohamad El-Ariss for the critical reading of the manuscript. This work was supported by a grant from the Canadian Institute of Health Research #MOP-341566 to CMB LP has been supported by a student fellowship from the Fondation des Étoiles. CMB is supported by a scientist award from the Fonds de recherche du Québec - Santé.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C M Beauséjour.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palacio, L., Krishnan, V., Le, N. et al. Sustained p16INK4a expression is required to prevent IR-induced tumorigenesis in mice. Oncogene 36, 1309–1314 (2017). https://doi.org/10.1038/onc.2016.298

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.298

Search

Quick links