Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Hepatic carcinoma-associated fibroblasts enhance immune suppression by facilitating the generation of myeloid-derived suppressor cells

Subjects

Abstract

A major barrier to effective cancer immunotherapy is immune suppression in favor of tumor progression. Additionally, the accumulation of myeloid-derived suppressor cells (MDSCs) has recently been recognized as a major mechanism of the promotion of immune suppression. However, how MDSCs are induced and the cells from which they arise remains unknown. Although studies have demonstrated that tumor-derived cytokines promote MDSC accumulation and activation, little is known regarding the role of the tumor stroma in MDSC accumulation and activation. In this study, we identified a novel mechanism of MDSC differentiation. Tumor-associated fibroblasts (TAFs) attracted monocytes by the stromal cell-derived factor (SDF)-1a/CXCR4 pathway and induced their differentiation into MDSCs through interleukin (IL)-6-mediated STAT3 activation. TAF-treated monocytes (T-MDSCs) then impaired T-cell proliferation and altered the phenotype and/or function of T-cells in an STAT3-dependent manner. CD11b+ myeloid cells, which resembled T-MDSCs both phenotypically and functionally, were primarily in the peritumoral stroma and a positive association with TAFs in vivo. Additionally, a negative association between CD11b+ myeloid cell densities and overall survival was observed. An increased number of stromal CD11b+ myeloid cells was correlated with Hepatocellular Carcinoma (HCC) progression. Together, our results are the first to show that TAF-derived cytokines, such as IL-6 and SDF-1a, can induce MDSC generation and activation and then impair human anti-tumor immune responses, which create favorable conditions for HCC progression. These data also suggest an important role for STAT3 activation in TAF-mediated MDSC generation and MDSC-mediated immune suppression. Consequently, methods in which immunotherapy is combined with IL-6, SDF-1a or STAT3 inhibition may offer an improved option to eliminate suppressive CD11b+ myeloid cells in HCC patients.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Ostrand-Rosenberg S, Sinha P, Beury DW, Clements VK . Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Semin Cancer Biol 2012; 22: 275–281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V . Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 2012; 12: 253–268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Serafini P, Borrello I, Bronte V . Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol 2006; 16: 53–65.

    Article  CAS  PubMed  Google Scholar 

  4. Greten TF, Manns MP, Korangy F . Myeloid derived suppressor cells in human diseases. Int Immunopharmacol 2011; 11: 802–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kusmartsev S, Su Z, Heiser A, Dannull J, Eruslanov E, Kübler H et al. Reversal of myeloid cell-mediated immunosuppression in patients with metastatic renal cell carcinoma. Clin Cancer Res 2008; 14: 8270–8278.

    Article  CAS  PubMed  Google Scholar 

  6. Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ . Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 2009; 58: 49–59.

    Article  CAS  PubMed  Google Scholar 

  7. Solito S, Falisi E, Diaz-Montero CM, Doni A, Pinton L, Rosato A et al. A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells. Blood 2011; 118: 2254–2265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Raychaudhuri B, Rayman P, Ireland J, Ko J, Rini B, Borden EC et al. Myeloid-derived suppressor cell accumulation and function in patients with newly diagnosed glioblastoma. Neuro Oncol 2011; 13: 591–599.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Almand B, Rayman P, Ireland J, Ko J, Rini B, Borden EC et al. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol 2001; 166: 678–689.

    Article  CAS  PubMed  Google Scholar 

  10. Mandruzzato S, Solito S, Falisi E, Francescato S, Chiarion-Sileni V, Mocellin S et al. IL4Ralpha+ myeloid-derived suppressor cell expansion in cancer patients. J Immunol 2009; 182: 6562–6568.

    Article  CAS  PubMed  Google Scholar 

  11. Vuk-Pavlovic S, Bulur PA, Lin Y, Qin R, Szumlanski CL, Zhao X et al. Immunosuppressive CD14+HLA-DRlow/- monocytes in prostate cancer. Prostate 2010; 70: 443–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Filipazzi P, Valenti R, Huber V, Pilla L, Canese P, Iero M et al. Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J Clin Oncol 2007; 25: 2546–2553.

    Article  CAS  PubMed  Google Scholar 

  13. Hoechst B, Ormandy LA, Ballmaier M, Lehner F, Krüger C, Manns MP et al. A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology 2008; 135: 234–243.

    Article  CAS  PubMed  Google Scholar 

  14. Rodriguez PC, Ernstoff MS, Hernandez C, Atkins M, Zabaleta J, Sierra R et al. Arginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytes. Cancer Res 2009; 69: 1553–1560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zea AH, Rodriguez PC, Atkins MB, Hernandez C, Signoretti S, Zabaleta J et al. Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res 2005; 65: 3044–3048.

    Article  CAS  PubMed  Google Scholar 

  16. Lechner MG, Liebertz DJ, Epstein AL . Characterization of cytokine-induced myeloid-derived suppressor cells from normal human peripheral blood mononuclear cells. J Immunol 2010; 185: 2273–2284.

    Article  CAS  PubMed  Google Scholar 

  17. Xing F, Saidou J, Watabe K . Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front Biosci (Landmark Ed) 2010; 15: 166–179.

    Article  CAS  Google Scholar 

  18. Berking C, Takemoto R, Schaider H, Showe L, Satyamoorthy K, Robbins P et al. Transforming growth factor-beta1 increases survival of human melanoma through stroma remodeling. Cancer Res 2001; 61: 8306–8316.

    CAS  PubMed  Google Scholar 

  19. Byzova TV, Goldman CK, Pampori N, Thomas KA, Bett A, Shattil SJ et al. A mechanism for modulation of cellular responses to VEGF: activation of the integrins. Mol Cell 2000; 6: 851–860.

    CAS  PubMed  Google Scholar 

  20. Kuperwasser C, Chavarria T, Wu M, Magrane G, Gray JW, Carey L et al. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc Natl Acad Sci USA 2004; 101: 4966–4971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Erez N, Truitt M, Olson P, Arron ST, Hanahan D . Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-kappaB-dependent manner. Cancer Cell 2010; 17: 135–147.

    Article  CAS  PubMed  Google Scholar 

  22. Hwang RF, Moore T, Arumugam T, Ramachandran V, Amos KD, Rivera A, Ji B et al. Cancer-associated stromal fibroblasts promote pancreatic tumor progression. Cancer Res 2008; 68: 918–926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liao D, Luo Y, Markowitz D, Xiang R, Reisfeld RA . Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model. PLoS One 2009; 4: e7965.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fukumura D, Xavier R, Sugiura T, Chen Y, Park EC, Lu N et al. Tumor induction of VEGF promoter activity in stromal cells. Cell 1998; 94: 715–725.

    Article  CAS  PubMed  Google Scholar 

  25. Goh PP, Sze DM, Roufogalis BD . Molecular and cellular regulators of cancer angiogenesis. Curr Cancer Drug Targets 2007; 7: 743–758.

    Article  CAS  PubMed  Google Scholar 

  26. Servais C, Erez N . From sentinel cells to inflammatory culprits: cancer-associated fibroblasts in tumour-related inflammation. J Pathol 2013; 229: 198–207.

    Article  CAS  PubMed  Google Scholar 

  27. Gaggioli C, Hooper S, Hidalgo-Carcedo C, Grosse R, Marshall JF, Harrington K et al. Fibroblast-led collective invasion of carcinoma cells with differing roles for RhoGTPases in leading and following cells. Nat Cell Biol 2007; 9: 1392–1400.

    Article  CAS  PubMed  Google Scholar 

  28. Barclay WW, Axanova LS, Chen W, Romero L, Maund SL, Soker S et al. Characterization of adult prostatic progenitor/stem cells exhibiting self-renewal and multilineage differentiation. Stem Cells 2008; 26: 600–610.

    Article  CAS  PubMed  Google Scholar 

  29. Morrison SJ, Spradling AC . Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 2008; 132: 598–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pavlides S, Tsirigos A, Vera I, Flomenberg N, Frank PG, Casimiro MC et al. Loss of stromal caveolin-1 leads to oxidative stress, mimics hypoxia and drives inflammation in the tumor microenvironment, conferring the "reverse Warburg effect": a transcriptional informatics analysis with validation. Cell Cycle 2010; 9: 2201–2219.

    Article  CAS  PubMed  Google Scholar 

  31. Su X, Ye J, Hsueh EC, Zhang Y, Hoft DF, Peng G . Tumor microenvironments direct the recruitment and expansion of human Th17 cells. J Immunol 2010; 184: 1630–1641.

    Article  CAS  PubMed  Google Scholar 

  32. Barnas JL, Simpson-Abelson MR, Brooks SP, Kelleher Jr RJ, Bankert RB . Reciprocal functional modulation of the activation of T lymphocytes and fibroblasts derived from human solid tumors. J Immunol 2010; 185: 2681–2692.

    Article  CAS  PubMed  Google Scholar 

  33. Balsamo M, Scordamaglia F, Pietra G, Manzini C, Cantoni C, Boitano M et al. Melanoma-associated fibroblasts modulate NK cell phenotype and antitumor cytotoxicity. Proc Natl Acad Sci USA 2009; 106: 20847–20852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li T, Yang Y, Hua X, Wang G, Liu W, Jia C et al. Hepatocellular carcinoma-associated fibroblasts trigger NK cell dysfunction via PGE2 and IDO. Cancer Lett 2012; 318: 154–161.

    Article  CAS  PubMed  Google Scholar 

  35. Marigo I, Bosio E, Solito S, Mesa C, Fernandez A, Dolcetti L et al. Tumor-induced tolerance and immune suppression depend on the C/EBPbeta transcription factor. Immunity 2010; 32: 790–802.

    Article  CAS  PubMed  Google Scholar 

  36. Kuang DM, Zhao Q, Xu J, Yun JP, Wu C, Zheng L . Tumor-educated tolerogenic dendritic cells induce CD3epsilon down-regulation and apoptosis of T cells through oxygen-dependent pathways. J Immunol 2008; 181: 3089–3098.

    Article  CAS  PubMed  Google Scholar 

  37. Gabrilovich DI, Nagaraj S . Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009; 9: 162–174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yan D, Yang Q, Shi M, Zhong L, Wu C, Meng T et al. Polyunsaturated fatty acids promote the expansion of myeloid-derived suppressor cells by activating the JAK/STAT3 pathway. Eur J Immunol 2013; 43: 2943–2955.

    Article  CAS  PubMed  Google Scholar 

  39. Highfill SL, Rodriguez PC, Zhou Q, Goetz CA, Koehn BH, Veenstra R et al. Bone marrow myeloid-derived suppressor cells (MDSCs) inhibit graft-versus-host disease (GVHD) via an arginase-1-dependent mechanism that is up-regulated by interleukin-13. Blood 2010; 116: 5738–5747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ostrand-Rosenberg S, Sinha P . Myeloid-derived suppressor cells: linking inflammation and cancer. J Immunol 2009; 182: 4499–4506.

    Article  CAS  PubMed  Google Scholar 

  41. Condamine T, Gabrilovich DI . Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol 2011; 32: 19–25.

    Article  CAS  PubMed  Google Scholar 

  42. Corzo CA, Cotter MJ, Cheng P, Cheng F, Kusmartsev S, Sotomayor E et al. Mechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cells. J Immunol 2009; 182: 5693–5701.

    Article  CAS  PubMed  Google Scholar 

  43. Fortin CF, Larbi A, Dupuis G, Lesur O, Fülöp T Jr . GM-CSF activates the Jak/STAT pathway to rescue polymorphonuclear neutrophils from spontaneous apoptosis in young but not elderly individuals. Biogerontology 2007; 8: 173–187.

    Article  CAS  PubMed  Google Scholar 

  44. Hodge DR, Hurt EM, Farrar WL . The role of IL-6 and STAT3 in inflammation and cancer. Eur J Cancer 2005; 41: 2502–2512.

    Article  CAS  PubMed  Google Scholar 

  45. Bayne LJ, Beatty GL, Jhala N, Clark CE, Rhim AD, Stanger BZ et al. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 2012; 21: 822–835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ohishi W, Cologne JB, Fujiwara S, Suzuki G, Hayashi T, Niwa Y et al. Serum interleukin-6 associated with hepatocellular carcinoma risk: a nested case-control study. Int J Cancer 2014; 134: 154–163.

    Article  PubMed  Google Scholar 

  47. Jia CC, Wang TT, Liu W, Fu BS, Hua X, Wang GY et al. Cancer-associated fibroblasts from hepatocellular carcinoma promote malignant cell proliferation by HGF secretion. PLoS One 2013; 8: e63243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vered M, Dayan D, Yahalom R, Dobriyan A, Barshack I et al. Cancer-associated fibroblasts and epithelial-mesenchymal transition in metastatic oral tongue squamous cell carcinoma. Int J Cancer 2010; 127: 1356–1362.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by: National Natural Science Foundation of China (81372243, 81172036, 81170451, 81370575, 81370555).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Yang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Y., Cheng, J., Fu, B. et al. Hepatic carcinoma-associated fibroblasts enhance immune suppression by facilitating the generation of myeloid-derived suppressor cells. Oncogene 36, 1090–1101 (2017). https://doi.org/10.1038/onc.2016.273

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.273

This article is cited by

Search

Quick links