Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cadherin-6 promotes EMT and cancer metastasis by restraining autophagy

Subjects

Abstract

The transdifferentiation of epithelial cells toward a mesenchymal condition (EMT) is a complex process that allows tumor cells to migrate to ectopic sites. Cadherins are not just structural proteins, but they act as sensors of the surrounding microenvironment and as signaling centers for cellular pathways. However, the molecular mechanisms underlying these signaling functions remain poorly characterized. Cadherin-6 (CDH6) is a type 2 cadherin, which drives EMT during embryonic development and it is aberrantly re-activated in cancer. We recently showed that CDH6 is a TGFβ target and an EMT marker in thyroid cancer, suggesting a role for this protein in the progression of this type of tumor. Papillary thyroid carcinomas (PTCs) are usually indolent lesions. However, metastatic spreading occurs in about 5% of the cases. The identification of molecular markers that could early predict the metastatic potential of these lesions would be strategic to design more tailored approaches and reduce patients overtreatment. In this work, we assessed the role of CDH6 in the metastatic progression of thyroid cancer. We showed that loss of CDH6 expression profoundly changes cellular architecture, alters the inter-cellular interaction modalities and attenuates EMT features in thyroid cancer cells. Using a yeast two-hybrid screening approach, based on a thyroid cancer patients library, we showed that CDH6 directly interacts with GABARAP, BNIP3 and BNIP3L, and that through these interactions CDH6 restrains autophagy and promotes re-organization of mitochondrial network through a DRP1-mediated mechanism. Analysis of the LIR domains suggests that the interaction with the autophagic machinery may be a common feature of many cadherin family members. Finally, the analysis of CDH6 expression in a unique cohort of human PTCs showed that CDH6 expression marks specifically EMT cells. and it is strongly associated with metastatic behavior and worse outcome of PTCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Davies L, Welch HG . Current thyroid cancer trends in the United States. JAMA Otolaryngol Head Neck Surg 2014; 140: 317–322.

    Article  PubMed  Google Scholar 

  2. Davies L, Welch HG . Thyroid cancer survival in the United States: observational data from 1973 to 2005. Arch Otolaryngol Head Neck Surg 2010; 136: 440–444.

    Article  PubMed  Google Scholar 

  3. Pellegriti G, Frasca F, Regalbuto C, Squatrito S, Vigneri R . Worldwide increasing incidence of thyroid cancer: update on epidemiology and risk factors. J Cancer Epidemiol 2013; 2013: 965212.

    Article  PubMed  PubMed Central  Google Scholar 

  4. American Thyroid Association (ATA) Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer American Thyroid Association (ATA) Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer Cooper DS American Thyroid Association (ATA) Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer Doherty GM American Thyroid Association (ATA) Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer Haugen BR American Thyroid Association (ATA) Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer Kloos RT et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009; 19: 1167–1214.

    Article  Google Scholar 

  5. Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL, Mandel SJ et al. Management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2006; 16: 109–142.

    Article  PubMed  Google Scholar 

  6. Kalluri R . EMT: when epithelial cells decide to become mesenchymal-like cells. J Clin Invest 2009; 119: 1417–1419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Polyak K, Weinberg RA . Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 2009; 9: 265–273.

    Article  CAS  PubMed  Google Scholar 

  8. Thiery JP, Acloque H, Huang RY, Nieto MA . Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139: 871–890.

    CAS  PubMed  Google Scholar 

  9. Nollet F, Kools P, van Roy F . Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. J Mol Biol 2000; 299: 551–572.

    Article  CAS  PubMed  Google Scholar 

  10. Kashef J, Kohler A, Kuriyama S, Alfandari D, Mayor R, Wedlich D . Cadherin-11 regulates protrusive activity in Xenopus cranial neural crest cells upstream of Trio and the small GTPases. Genes Dev 2009; 23: 1393–1398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim SH, Li Z, Sacks DB . E-cadherin-mediated cell-cell attachment activates Cdc42. J Biol Chem 2000; 275: 36999–37005.

    Article  CAS  PubMed  Google Scholar 

  12. Kovacs EM, Ali RG, McCormack AJ, Yap AS . E-cadherin homophilic ligation directly signals through Rac and phosphatidylinositol 3-kinase to regulate adhesive contacts. J Biol Chem 2002; 277: 6708–6718.

    Article  CAS  PubMed  Google Scholar 

  13. Noren NK, Arthur WT, Burridge K . Cadherin engagement inhibits RhoA via p190RhoGAP. J Biol Chem 2003; 278: 13615–13618.

    Article  CAS  PubMed  Google Scholar 

  14. Zaidel-Bar R . Cadherin adhesome at a glance. J Cell Sci 2013; 126: 373–378.

    Article  CAS  PubMed  Google Scholar 

  15. Cho EA, Patterson LT, Brookhiser WT, Mah S, Kintner C, Dressler GR . Differential expression and function of cadherin-6 during renal epithelium development. Development 1998; 125: 803–812.

    CAS  PubMed  Google Scholar 

  16. Inoue T, Chisaka O, Matsunami H, Takeichi M . Cadherin-6 expression transiently delineates specific rhombomeres, other neural tube subdivisions, and neural crest subpopulations in mouse embryos. Dev Biol 1997; 183: 183–194.

    Article  CAS  PubMed  Google Scholar 

  17. Inoue YU, Asami J, Inoue T . Cadherin-6 gene regulatory patterns in the postnatal mouse brain. Mol Cell Neurosci 2008; 39: 95–104.

    Article  CAS  PubMed  Google Scholar 

  18. Jia L, Liu F, Hansen SH, Ter Beest MB, Zegers MM . Distinct roles of cadherin-6 and E-cadherin in tubulogenesis and lumen formation. Mol Biol Cell 2011; 22: 2031–2041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kobel M, Kalloger SE, Boyd N, McKinney S, Mehl E, Palmer C et al. Ovarian carcinoma subtypes are different diseases: implications for biomarker studies. PLoS Med 2008; 5: e232.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Shimazui T, Oosterwijk E, Akaza H, Bringuier P, Ruijter E, van Berkel H et al. Expression of cadherin-6 as a novel diagnostic tool to predict prognosis of patients with E-cadherin-absent renal cell carcinoma. Clin Cancer Res 1998; 4: 2419–2424.

    CAS  PubMed  Google Scholar 

  21. Ciarrocchi A, Piana S, Valcavi R, Gardini G, Casali B . Inhibitor of DNA binding-1 induces mesenchymal features and promotes invasiveness in thyroid tumour cells. Eur J Cancer 2011; 47: 934–945.

    Article  CAS  PubMed  Google Scholar 

  22. Sancisi V, Gandolfi G, Ragazzi M, Nicoli D, Tamagnini I, Piana S et al. Cadherin 6 is a new RUNX2 target in TGF-beta signalling pathway. PLoS ONE 2013; 8: e75489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tojkander S, Gateva G, Lappalainen P . Actin stress fibers—assembly, dynamics and biological roles. J Cell Sci 2012; 125: 1855–1864.

    Article  CAS  PubMed  Google Scholar 

  24. Clay MR, Halloran MC . Cadherin 6 promotes neural crest cell detachment via F-actin regulation and influences active Rho distribution during epithelial-to-mesenchymal transition. Development 2014; 141: 2506–2515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cali G, Gentile F, Mogavero S, Pallante P, Nitsch R, Ciancia G et al. CDH16/Ksp-cadherin is expressed in the developing thyroid gland and is strongly down-regulated in thyroid carcinomas. Endocrinology 2012; 153: 522–534.

    Article  CAS  PubMed  Google Scholar 

  26. Boutet A, De Frutos CA, Maxwell PH, Mayol MJ, Romero J, Nieto MA . Snail activation disrupts tissue homeostasis and induces fibrosis in the adult kidney. EMBO J 2006; 25: 5603–5613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Slobodkin MR, Elazar Z . The Atg8 family: multifunctional ubiquitin-like key regulators of autophagy. Essays Biochem 2013; 55: 51–64.

    Article  CAS  PubMed  Google Scholar 

  28. Ney PA . Mitochondrial autophagy: Origins, significance, and role of BNIP3 and NIX. Biochim Biophys Acta 2015; 1853 (10 Pt B): 2775–2783.

    Article  CAS  PubMed  Google Scholar 

  29. Schwarten M, Mohrluder J, Ma P, Stoldt M, Thielmann Y, Stangler T et al. Nix directly binds to GABARAP: a possible crosstalk between apoptosis and autophagy. Autophagy 2009; 5: 690–698.

    Article  CAS  PubMed  Google Scholar 

  30. Galluzzi L, Pietrocola F, Bravo-San Pedro JM, Amaravadi RK, Baehrecke EH, Cecconi F et al. Autophagy in malignant transformation and cancer progression. EMBO J 2015; 34: 856–880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gomes LC, Scorrano L . Mitochondrial morphology in mitophagy and macroautophagy. Biochim Biophys Acta 2013; 1833: 205–212.

    Article  CAS  PubMed  Google Scholar 

  32. Desai SP, Bhatia SN, Toner M, Irimia D . Mitochondrial localization and the persistent migration of epithelial cancer cells. Biophys J 2013; 104: 2077–2088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Serasinghe MN, Wieder SY, Renault TT, Elkholi R, Asciolla JJ, Yao JL et al. Mitochondrial division is requisite to RAS-induced transformation and targeted by oncogenic MAPK pathway inhibitors. Mol Cell 2015; 57: 521–536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wild P, McEwan DG, Dikic I . The LC3 interactome at a glance. J Cell Sci 2014; 127: 3–9.

    Article  CAS  PubMed  Google Scholar 

  35. Gandolfi G, Sancisi V, Piana S, Ciarrocchi A . Time to re-consider the meaning of BRAF V600E mutation in papillary thyroid carcinoma. Int J Cancer 2015; 137: 1001–1011.

    Article  CAS  PubMed  Google Scholar 

  36. Friedl P, Gilmour G . Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 2009; 10: 445–457.

    Article  CAS  PubMed  Google Scholar 

  37. Gray RS, Cheung KJ, Ewald AJ . Cellular mechanisms regulating epithelial morphogenesis and cancer invasion. Curr Opin Cell Biol 2010; 22: 640–650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Friedl P, Locker J, Sahai E, Segall JE . Classifying collective cancer cell invasion. Nat Cell Biol 2012; 14: 777–783.

    Article  PubMed  Google Scholar 

  39. Tsuji T, Ibaragi S, Hu GF . Epithelial-mesenchymal transition and cell cooperativity in metastasis. Cancer Res 2009; 69: 7135–7139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Choi PW, Yang J, Ng SK, Feltmate C, Muto MG, Hasselblatt K et al. Loss of E-cadherin disrupts ovarian epithelial inclusion cyst formation and collective cell movement in ovarian cancer cells. Oncotarget 2015; 7: 4110–4121.

    PubMed Central  Google Scholar 

  41. Cai D, Chen SC, Prasad M, He L, Wang X, Choesmel-Cadamuro V et al. Mechanical feedback through E-cadherin promotes direction sensing during collective cell migration. Cell 2014; 157: 1146–1159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Scheumman GF, Hoang-Vu C, Cetin Y, Gimm O, Behrends J, von Wasielewski R et al. Clinical significance of E-cadherin as a prognostic marker in thyroid carcinomas. J Clin Endocrinol Metab 1995; 80: 2168–2172.

    CAS  PubMed  Google Scholar 

  43. Brabant G, Hoang-Vu C, Cetin Y, Dralle H, Scheumann G, Mölne J et al. E-cadherin: a differentiation marker in thyroid malignancies. Cancer Res 1993; 53: 4987–4993.

    CAS  PubMed  Google Scholar 

  44. Catalano M, D'Alessandro G, Lepore F, Corazzari M, Caldarola S, Valacca C et al. Autophagy induction impairs migration and invasion by reversing EMT in glioblastoma cells. Mol Oncol 2015; 9: 1612–1625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kashatus JA, Nascimento A, Myers LJ, Sher A, Byrne FL, Hoehn KL et al. Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth. Mol Cell 2015; 57: 537–551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rehman J, Zhang HJ, Toth PT, Zhang Y, Marsboom G, Hong Z et al. Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer. FASEB J 2012; 26: 2175–2186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xie Q, Wu Q, Horbinski CM, Flavahan WA, Yang K, Zhou W et al. Mitochondrial control by DRP1 in brain tumor initiating cells. Nat Neurosci 2015; 18: 501–510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhao J, Zhang J, Yu M, Xie Y, Huang Y, Wolff DW et al. Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene 2013; 32: 4814–4824.

    Article  CAS  PubMed  Google Scholar 

  49. Akalay I, Janji B, Hasmim M, Noman MZ, Andre F, De Cremoux P et al. Epithelial-to-mesenchymal transition and autophagy induction in breast carcinoma promote escape from T-cell-mediated lysis. Cancer Res 2013; 73: 2418–2427.

    Article  CAS  PubMed  Google Scholar 

  50. Peng YF, Shi YH, Ding ZB, Ke AW, Gu CY, Hui B et al. Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells. Autophagy 2013; 9: 2056–2068.

    Article  CAS  PubMed  Google Scholar 

  51. Wang H, Olsen RW . Binding of the GABA(A) receptor-associated protein (GABARAP) to microtubules and microfilaments suggests involvement of the cytoskeleton in GABARAPGABA(A) receptor interaction. J Neurochem 2000; 75: 644–655.

    Article  CAS  PubMed  Google Scholar 

  52. Chen L, Wang H, Vicini S, Olsen RW . The gamma-aminobutyric acid type A (GABAA) receptor-associated protein (GABARAP) promotes GABAA receptor clustering and modulates the channel kinetics. Proc Natl Acad Sci USA 2000; 97: 11557–11562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Maes H, Van Eygen S, Krysko DV, Vandenabeele P, Nys K, Rillaerts K et al. BNIP3 supports melanoma cell migration and vasculogenic mimicry by orchestrating the actin cytoskeleton. Cell Death Dis 2014; 5: e1127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sancisi V, Borettini G, Maramotti S, Ragazzi M, Tamagnini I, Nicoli D et al. Runx2 isoform I controls a panel of proinvasive genes driving aggressiveness of papillary thyroid carcinomas. J Clin Endocrinol Metab 2012; 97: E2006–E2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Additional Materials and Methods are supplied in the Supplementary Information. This work was supported by the Italian Association for Cancer Research (AIRC, MFAG10745) and by the Italian Ministry of Health (GR-2011-02350937). GG is supported by a fellowship of the Umberto Veronesi Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Ciarrocchi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gugnoni, M., Sancisi, V., Gandolfi, G. et al. Cadherin-6 promotes EMT and cancer metastasis by restraining autophagy. Oncogene 36, 667–677 (2017). https://doi.org/10.1038/onc.2016.237

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.237

This article is cited by

Search

Quick links