Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Exosomes miR-126a released from MDSC induced by DOX treatment promotes lung metastasis

Abstract

Acquired resistance to chemotherapy remains a major stumbling block in cancer treatment. Chronic inflammation has a crucial role in induction of chemoresistance and results, in part, from the induction and expansion of inflammatory cells that include myeloid-derived suppressor cells (MDSCs) and IL-13+ Th2 cells. The mechanisms that lead to induction of activated MDSCs and IL-13+ Th2 cells have not yet been identified. Here we demonstrated that doxorubicin (DOX) treatment of 4T1 breast tumor-bearing mice led to the induction of IL-13R+miR-126a+ MDSCs (DOX-MDSC). DOX-MDSC promote breast tumor lung metastasis through MDSC miR-126a+ exosomal-mediated induction of IL-13+ Th2 cells and tumor angiogenesis. The induction of DOX-MDSC is regulated in a paracrine manner. DOX treatment not only increases interleukin (IL)-33 released from breast tumor cells, which is crucial for the induction of IL-13+ Th2 cells, but it also participates in the induction of IL-13 receptors and miR-126a expressed on/in the MDSCs. IL-13 released from IL-13+Th2 cells then promotes the production of DOX-MDSC and MDSC miR-126a+ exosomes via MDSC IL-13R. MDSC miR-126a+ exosomes further induce IL13+ Th2 cells in a positive feed-back loop manner. We also showed that MDSC miR-126a rescues DOX-induced MDSC death in a S100A8/A9-dependent manner and promotes tumor angiogenesis. Our findings provide insight into the MDSC exosomal-mediated chemoresistance mechanism, which will be useful for the design of inhibitors targeting the blocking of induction of miR-126a+ MDSCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Talmadge JE, Gabrilovich DI . History of myeloid-derived suppressor cells. Nat Rev Cancer 2013; 13: 739–752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Suzuki A, Leland P, Joshi BH, Puri RK . Targeting of IL-4 and IL-13 receptors for cancer therapy. Cytokine 2015; 75: 79–88.

    Article  CAS  PubMed  Google Scholar 

  3. Joshi BH, Puri RK . IL-13 receptor-alpha2: a novel target for cancer therapy. Immunotherapy 2009; 1: 321–327.

    Article  CAS  PubMed  Google Scholar 

  4. Ran S . The role of TLR4 in chemotherapy-driven metastasis. Cancer Res 2015; 75: 2405–2410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Volk-Draper L, Hall K, Griggs C, Rajput S, Kohio P, DeNardo D et al. Paclitaxel therapy promotes breast cancer metastasis in a TLR4-dependent manner. Cancer Res 2014; 74: 5421–5434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bruchard M, Mignot G, Derangere V, Chalmin F, Chevriaux A, Vegran F et al. Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat Med 2013; 19: 57–64.

    Article  CAS  PubMed  Google Scholar 

  7. Ghiringhelli F, Apetoh L . The interplay between the immune system and chemotherapy: emerging methods for optimizing therapy. Expert Rev Clin Immunol 2014; 10: 19–30.

    Article  CAS  PubMed  Google Scholar 

  8. Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ . Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother 2009; 58: 49–59.

    Article  CAS  PubMed  Google Scholar 

  9. Payne KK, Zoon CK, Wan W, Marlar K, Keim RC, Kenari MN et al. Peripheral blood mononuclear cells of patients with breast cancer can be reprogrammed to enhance anti-HER-2/neu reactivity and overcome myeloid-derived suppressor cells. Breast Cancer Res Treat 2013; 142: 45–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Meyer C, Cagnon L, Costa-Nunes CM, Baumgaertner P, Montandon N, Leyvraz L et al. Frequencies of circulating MDSC correlate with clinical outcome of melanoma patients treated with ipilimumab. Cancer Immunol Immunother 2014; 63: 247–257.

    Article  CAS  PubMed  Google Scholar 

  11. Umansky V, Sevko A . Overcoming immunosuppression in the melanoma microenvironment induced by chronic inflammation. Cancer Immunol Immunother 2012; 61: 275–282.

    Article  CAS  PubMed  Google Scholar 

  12. Yin Y, Huang X, Lynn KD, Thorpe PE . Phosphatidylserine-targeting antibody induces M1 macrophage polarization and promotes myeloid-derived suppressor cell differentiation. Cancer Immunol Res 2013; 1: 256–268.

    Article  CAS  PubMed  Google Scholar 

  13. Azmi AS, Bao B, Sarkar FH . Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer Metastasis Rev 2013; 32: 623–642.

    Article  CAS  PubMed  Google Scholar 

  14. Boelens MC, Wu TJ, Nabet BY, Xu B, Qiu Y, Yoon T et al. Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell 2014; 159: 499–513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Challagundla KB, Wise PM, Neviani P, Chava H, Murtadha M, Xu T et al. Exosome-mediated transfer of microRNAs within the tumor microenvironment and neuroblastoma resistance to chemotherapy. J Natl Cancer Inst 2015; 107: 135–148.

    Article  Google Scholar 

  16. Koch R, Aung T, Vogel D, Chapuy B, Wenzel D, Becker S et al. Nuclear trapping through inhibition of exosomal export by indomethacin increases cytostatic efficacy of doxorubicin and pixantrone. Clin Cancer Res 2015; 22: 395–404.

    Article  PubMed  Google Scholar 

  17. Wang J, Hendrix A, Hernot S, Lemaire M, De Bruyne E, Van Valckenborgh E et al. Bone marrow stromal cell-derived exosomes as communicators in drug resistance in multiple myeloma cells. Blood 2014; 124: 555–566.

    Article  CAS  PubMed  Google Scholar 

  18. Burke MC, Oei MS, Edwards NJ, Ostrand-Rosenberg S, Fenselau C . Ubiquitinated proteins in exosomes secreted by myeloid-derived suppressor cells. J Proteome Res 2014; 13: 5965–5972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lieberman J, Slack F, Pandolfi PP, Chinnaiyan A, Agami R, Mendell JT . Noncoding RNAs and cancer. Cell 2013; 153: 9–10.

    Article  PubMed  Google Scholar 

  20. Lin S, Gregory RI . MicroRNA biogenesis pathways in cancer. Nat Rev Cancer 2015; 15: 321–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shen J, Hung MC . Signaling-mediated regulation of microRNA processing. Cancer Res 2015; 75: 783–791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Meister J, Schmidt MH . miR-126 and miR-126*: new players in cancer. ScientificWorldJournal 2010; 10: 2090–2100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ebrahimi F, Gopalan V, Wahab R, Lu CT, Anthony Smith R, Lam AK . Deregulation of miR-126 expression in colorectal cancer pathogenesis and its clinical significance. Exp Cell Res 2015; 339: 333–341.

    Article  CAS  PubMed  Google Scholar 

  24. de Leeuw DC, Denkers F, Olthof MC, Rutten AP, Pouwels W, Schuurhuis GJ et al. Attenuation of microRNA-126 expression that drives CD34+38- stem/progenitor cells in acute myeloid leukemia leads to tumor eradication. Cancer Res 2014; 74: 2094–2105.

    Article  CAS  PubMed  Google Scholar 

  25. Shibayama Y, Kondo T, Ohya H, Fujisawa S, Teshima T, Iseki K . Upregulation of microRNA-126-5p is associated with drug resistance to cytarabine and poor prognosis in AML patients. Oncol Rep 2015; 33: 2176–2182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Goerke SM, Kiefer LS, Stark GB, Simunovic F, Finkenzeller G . miR-126 modulates angiogenic growth parameters of peripheral blood endothelial progenitor cells. Biol Chem 2015; 396: 245–252.

    Article  CAS  PubMed  Google Scholar 

  27. Schober A, Nazari-Jahantigh M, Wei Y, Bidzhekov K, Gremse F, Grommes J et al. MicroRNA-126-5p promotes endothelial proliferation and limits atherosclerosis by suppressing Dlk1. Nat Med 2014; 20: 368–376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Agudo J, Ruzo A, Tung N, Salmon H, Leboeuf M, Hashimoto D et al. The miR-126-VEGFR2 axis controls the innate response to pathogen-associated nucleic acids. Nat Immunol 2014; 15: 54–62.

    Article  CAS  PubMed  Google Scholar 

  29. Yang Z, Wang R, Zhang T, Dong X . MicroRNA-126 regulates migration and invasion of gastric cancer by targeting CADM1. Int J Clin Exp Pathol 2015; 8: 8869–8880.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Mattes J, Collison A, Plank M, Phipps S, Foster PS . Antagonism of microRNA-126 suppresses the effector function of TH2 cells and the development of allergic airways disease. Proc Natl Acad Sci USA 2009; 106: 18704–18709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guabiraba R, Besnard AG, Menezes GB, Secher T, Jabir MS, Amaral SS et al. IL-33 targeting attenuates intestinal mucositis and enhances effective tumor chemotherapy in mice. Mucosal Immunol 2014; 7: 1079–1093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ozkok A, Edelstein CL . Pathophysiology of cisplatin-induced acute kidney injury. Biomed Res Int 2014; 2014: 967826.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Garlanda C, Anders HJ, Mantovani A . TIR8/SIGIRR: an IL-1R/TLR family member with regulatory functions in inflammation and T cell polarization. Trends Immunol 2009; 30: 439–446.

    Article  CAS  PubMed  Google Scholar 

  34. Schmieder A, Multhoff G, Radons J . Interleukin-33 acts as a pro-inflammatory cytokine and modulates its receptor gene expression in highly metastatic human pancreatic carcinoma cells. Cytokine 2012; 60: 514–521.

    Article  CAS  PubMed  Google Scholar 

  35. Reichenbach DK, Schwarze V, Matta BM, Tkachev V, Lieberknecht E, Liu Q et al. The IL-33/ST2 axis augments effector T-cell responses during acute GVHD. Blood 2015; 125: 3183–3192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Seidelin JB, Rogler G, Nielsen OH . A role for interleukin-33 in T(H)2-polarized intestinal inflammation? Mucosal Immunol 2011; 4: 496–502.

    Article  CAS  PubMed  Google Scholar 

  37. Alizadeh D, Trad M, Hanke NT, Larmonier CB, Janikashvili N, Bonnotte B et al. Doxorubicin eliminates myeloid-derived suppressor cells and enhances the efficacy of adoptive T-cell transfer in breast cancer. Cancer Res 2014; 74: 104–118.

    Article  CAS  PubMed  Google Scholar 

  38. Acharyya S, Oskarsson T, Vanharanta S, Malladi S, Kim J, Morris PG et al. A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell 2012; 150: 165–178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Condamine T, Ramachandran I, Youn JI, Gabrilovich DI . Regulation of tumor metastasis by myeloid-derived suppressor cells. Annu Rev Med 2015; 66: 97–110.

    Article  CAS  PubMed  Google Scholar 

  40. Marvel D, Gabrilovich DI . Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected. J Clin Invest 2015; 125: 3356–3364.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rutkowski MR, Stephen TL, Svoronos N, Allegrezza MJ, Tesone AJ, Perales-Puchalt A et al. Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation. Cancer Cell 2015; 27: 27–40.

    Article  CAS  PubMed  Google Scholar 

  42. Colombo M, Raposo G, Thery C . Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 2014; 30: 255–289.

    Article  CAS  PubMed  Google Scholar 

  43. Thery C, Ostrowski M, Segura E . Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 2009; 9: 581–593.

    Article  CAS  PubMed  Google Scholar 

  44. Chairoungdua A, Smith DL, Pochard P, Hull M, Caplan MJ . Exosome release of beta-catenin: a novel mechanism that antagonizes Wnt signaling. J Cell Biol 2010; 190: 1079–1091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ohshima K, Kanto K, Hatakeyama K, Ide T, Wakabayashi-Nakao K, Watanabe Y et al. Exosome-mediated extracellular release of polyadenylate-binding protein 1 in human metastatic duodenal cancer cells. Proteomics 2014; 14: 2297–2306.

    Article  CAS  PubMed  Google Scholar 

  46. Wang Q, Zhuang X, Mu J, Deng ZB, Jiang H, Zhang L et al. Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids. Nat Commun 2013; 4: 1867.

    Article  PubMed  Google Scholar 

  47. Ohshima K, Inoue K, Fujiwara A, Hatakeyama K, Kanto K, Watanabe Y et al. Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS One 2010; 5: e13247.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T . Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 2010; 285: 17442–17452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Villarroya-Beltri C, Baixauli F, Gutierrez-Vazquez C, Sanchez-Madrid F, Mittelbrunn M . Sorting it out: regulation of exosome loading. Semin Cancer Biol 2014; 28: 3–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Koppers-Lalic D, Hackenberg M, Bijnsdorp IV, van Eijndhoven MA, Sadek P, Sie D et al. Nontemplated nucleotide additions distinguish the small RNA composition in cells from exosomes. Cell Rep 2014; 8: 1649–1658.

    Article  CAS  PubMed  Google Scholar 

  51. Guduric-Fuchs J, O'Connor A, Camp B, O'Neill CL, Medina RJ, Simpson DA . Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. BMC Genomics 2012; 13: 357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xiang Y, Ma N, Wang D, Zhang Y, Zhou J, Wu G et al. MiR-152 and miR-185 co-contribute to ovarian cancer cells cisplatin sensitivity by targeting DNMT1 directly: a novel epigenetic therapy independent of decitabine. Oncogene 2014; 33: 378–386.

    Article  CAS  PubMed  Google Scholar 

  53. Xiang X, Liu Y, Zhuang X, Zhang S, Michalek S, Taylor DD et al. TLR2-mediated expansion of MDSCs is dependent on the source of tumor exosomes. Am J Pathol 2010; 177: 1606–1610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang Q, Ren Y, Mu J, Egilmez NK, Zhuang X, Deng Z et al. Grapefruit-derived nanovectors use an activated leukocyte trafficking pathway to deliver therapeutic agents to inflammatory tumor sites. Cancer Res 2015; 75: 2520–2529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (NIH) (R01AT008617, UH3TR000875) and the Louisville Veterans Administration Medical Center (VAMC) Merit Review Grants (to H-G Zhang). H-G Zhang is supported by a Research Career Scientist (RCS) Award, funded by the US Department of Veterans Affairs. We thank Dr Jerald Ainsworth for editorial assistance.

Author contributions

All the authors designed the experiments, analyzed and interpreted the results and wrote the paper. ZD, JM and XZ performed the experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z Deng or H-G Zhang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Z., Rong, Y., Teng, Y. et al. Exosomes miR-126a released from MDSC induced by DOX treatment promotes lung metastasis. Oncogene 36, 639–651 (2017). https://doi.org/10.1038/onc.2016.229

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.229

This article is cited by

Search

Quick links