Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

USP8 suppresses death receptor-mediated apoptosis by enhancing FLIPL stability

Subjects

Abstract

FLICE-like inhibitory protein (FLIP) is a critical regulator of death receptor-mediated apoptosis. Here, we found ubiquitin-specific peptidase 8 (USP8) to be a novel deubiquitylase of the long isoform of FLIP (FLIPL). USP8 directly deubiquitylates and stabilizes FLIPL, but not the short isoform. USP8 depletion induces FLIPL destabilization, promoting anti-Fas-, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)- and tumor necrosis factor alpha-induced extrinsic apoptosis by facilitating death-inducing signaling complex or TNFR1 complex II formation, which results in the activation of caspase-8 and caspase-3. USP8 mRNA levels are elevated in melanoma and cervical cancers, and the protein levels of USP8 and FLIPL are positively correlated in these cancer cell lines. Xenograft analyses using ME-180 cervical cancer cells showed that USP8 depletion attenuated tumor growth upon TRAIL injection. Taken together, our data indicate that USP8 functions as a novel deubiquitylase of FLIPL and inhibits extrinsic apoptosis by stabilizing FLIPL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Mahmood Z, Shukla Y . Death receptors: targets for cancer therapy. Exp Cell Res 2010; 316: 887–899.

    Article  CAS  Google Scholar 

  2. French LE, Tschopp J . Protein-based therapeutic approaches targeting death receptors. Cell Death Differ 2003; 10: 117–123.

    Article  CAS  Google Scholar 

  3. Wajant H . Death receptors. Essays Biochem 2003; 39: 53–71.

    Article  CAS  Google Scholar 

  4. Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M, Krammer PH et al. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 1995; 14: 5579–5588.

    Article  CAS  Google Scholar 

  5. Dickens LS, Boyd RS, Jukes-Jones R, Hughes MA, Robinson GL, Fairall L et al. A death effector domain chain DISC model reveals a crucial role for caspase-8 chain assembly in mediating apoptotic cell death. Mol Cell 2012; 47: 291–305.

    Article  CAS  Google Scholar 

  6. Schleich K, Warnken U, Fricker N, Ozturk S, Richter P, Kammerer K et al. Stoichiometry of the CD95 death-inducing signaling complex: experimental and modeling evidence for a death effector domain chain model. Mol Cell 2012; 47: 306–319.

    Article  CAS  Google Scholar 

  7. Lavrik I, Golks A, Krammer PH . Death receptor signaling. J Cell Sci 2005; 118: 265–267.

    Article  CAS  Google Scholar 

  8. Wilson NS, Dixit V, Ashkenazi A . Death receptor signal transducers: nodes of coordination in immune signaling networks. Nat Immunol 2009; 10: 348–355.

    Article  CAS  Google Scholar 

  9. Symons A, Beinke S, Ley SC . MAP kinase kinase kinases and innate immunity. Trends Immunol 2006; 27: 40–48.

    Article  CAS  Google Scholar 

  10. Varfolomeev EE, Ashkenazi A . Tumor necrosis factor: an apoptosis JuNKie? Cell 2004; 116: 491–497.

    Article  CAS  Google Scholar 

  11. Wang L, Du F, Wang X . TNF-alpha induces two distinct caspase-8 activation pathways. Cell 2008; 133: 693–703.

    Article  CAS  Google Scholar 

  12. Schutze S, Tchikov V, Schneider-Brachert W . Regulation of TNFR1 and CD95 signalling by receptor compartmentalization. Nat Rev Mol Cell Biol 2008; 9: 655–662.

    Article  Google Scholar 

  13. Yu JW, Shi Y . FLIP and the death effector domain family. Oncogene 2008; 27: 6216–6227.

    Article  CAS  Google Scholar 

  14. Tschopp J, Irmler M, Thome M . Inhibition of fas death signals by FLIPs. Curr Opin Immunol 1998; 10: 552–558.

    Article  CAS  Google Scholar 

  15. Inohara N, Koseki T, Hu Y, Chen S, Nunez G . CLARP, a death effector domain-containing protein interacts with caspase-8 and regulates apoptosis. Proc Natl Acad Sci U S A 1997; 94: 10717–10722.

    Article  CAS  Google Scholar 

  16. Hu S, Vincenz C, Ni J, Gentz R, Dixit VM . I-FLICE, a novel inhibitor of tumor necrosis factor receptor-1- and CD-95-induced apoptosis. J Biol Chem 1997; 272: 17255–17257.

    Article  CAS  Google Scholar 

  17. Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V et al. Inhibition of death receptor signals by cellular FLIP. Nature 1997; 388: 190–195.

    Article  CAS  Google Scholar 

  18. Goltsev YV, Kovalenko AV, Arnold E, Varfolomeev EE, Brodianskii VM, Wallach D . CASH a novel caspase homologue with death effector domains. J Biol Chem 1997; 272: 19641–19644.

    Article  CAS  Google Scholar 

  19. Srinivasula SM, Ahmad M, Ottilie S, Bullrich F, Banks S, Wang Y et al. FLAME-1, a novel FADD-like anti-apoptotic molecule that regulates Fas/TNFR1-induced apoptosis. J Biol Chem 1997; 272: 18542–18545.

    Article  CAS  Google Scholar 

  20. Shu HB, Halpin DR, Goeddel DV . Casper is a FADD- and caspase-related inducer of apoptosis. Immunity 1997; 6: 751–763.

    Article  CAS  Google Scholar 

  21. Thome M, Tschopp J . Regulation of lymphocyte proliferation and death by FLIP. Nat Rev Immunol 2001; 1: 50–58.

    Article  CAS  Google Scholar 

  22. Krueger A, Schmitz I, Baumann S, Krammer PH, Kirchhoff S . Cellular FLICE-inhibitory protein splice variants inhibit different steps of caspase-8 activation at the CD95 death-inducing signaling complex. J Biol Chem 2001; 276: 20633–20640.

    Article  CAS  Google Scholar 

  23. Micheau O, Thome M, Schneider P, Holler N, Tschopp J, Nicholson DW et al. The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. J Biol Chem 2002; 277: 45162–45171.

    Article  CAS  Google Scholar 

  24. Boatright KM, Deis C, Denault JB, Sutherlin DP, Salvesen GS . Activation of caspases-8 and -10 by FLIP(L). Biochem J 2004; 382: 651–657.

    Article  CAS  Google Scholar 

  25. Pop C, Oberst A, Drag M, Van Raam BJ, Riedl SJ, Green DR et al. FLIP(L) induces caspase 8 activity in the absence of interdomain caspase 8 cleavage and alters substrate specificity. Biochem J 2011; 433: 447–457.

    Article  CAS  Google Scholar 

  26. Weinlich R, Dillon CP, Green DR . Ripped to death. Trends Cell Biol 2011; 21: 630–637.

    Article  CAS  Google Scholar 

  27. Hughes MA, Powley IR, Jukes-Jones R, Horn S, Feoktistova M, Fairall L et al. Co-operative and hierarchical binding of c-FLIP and caspase-8: a unified model defines how c-FLIP isoforms differentially control cell fate. Mol Cell 2016; 61: 834–849.

    Article  CAS  Google Scholar 

  28. Panka DJ, Mano T, Suhara T, Walsh K, Mier JW . Phosphatidylinositol 3-kinase/Akt activity regulates c-FLIP expression in tumor cells. J Biol Chem 2001; 276: 6893–6896.

    Article  CAS  Google Scholar 

  29. Kreuz S, Siegmund D, Scheurich P, Wajant H . NF-kappaB inducers upregulate cFLIP, a cycloheximide-sensitive inhibitor of death receptor signaling. Mol Cell Biol 2001; 21: 3964–3973.

    Article  CAS  Google Scholar 

  30. Yerbes R, Lopez-Rivas A, Reginato MJ, Palacios C . Control of FLIP(L) expression and TRAIL resistance by the extracellular signal-regulated kinase1/2 pathway in breast epithelial cells. Cell Death Differ 2012; 19: 1908–1916.

    Article  CAS  Google Scholar 

  31. Chang L, Kamata H, Solinas G, Luo JL, Maeda S, Venuprasad K et al. The E3 ubiquitin ligase itch couples JNK activation to TNFalpha-induced cell death by inducing c-FLIP(L) turnover. Cell 2006; 124: 601–613.

    Article  CAS  Google Scholar 

  32. Chanvorachote P, Nimmannit U, Wang L, Stehlik C, Lu B, Azad N et al. Nitric oxide negatively regulates Fas CD95-induced apoptosis through inhibition of ubiquitin-proteasome-mediated degradation of FLICE inhibitory protein. J Biol Chem 2005; 280: 42044–42050.

    Article  CAS  Google Scholar 

  33. Kaunisto A, Kochin V, Asaoka T, Mikhailov A, Poukkula M, Meinander A et al. PKC-mediated phosphorylation regulates c-FLIP ubiquitylation and stability. Cell Death Differ 2009; 16: 1215–1226.

    Article  CAS  Google Scholar 

  34. Poukkula M, Kaunisto A, Hietakangas V, Denessiouk K, Katajamaki T, Johnson MS et al. Rapid turnover of c-FLIPshort is determined by its unique C-terminal tail. J Biol Chem 2005; 280: 27345–27355.

    Article  CAS  Google Scholar 

  35. Kim Y, Suh N, Sporn M, Reed JC . An inducible pathway for degradation of FLIP protein sensitizes tumor cells to TRAIL-induced apoptosis. J Biol Chem 2002; 277: 22320–22329.

    Article  CAS  Google Scholar 

  36. Perez D, White E . E1A sensitizes cells to tumor necrosis factor alpha by downregulating c-FLIP S. J Virol 2003; 77: 2651–2662.

    Article  CAS  Google Scholar 

  37. Fukazawa T, Fujiwara T, Uno F, Teraishi F, Kadowaki Y, Itoshima T et al. Accelerated degradation of cellular FLIP protein through the ubiquitin-proteasome pathway in p53-mediated apoptosis of human cancer cells. Oncogene 2001; 20: 5225–5231.

    Article  CAS  Google Scholar 

  38. Naviglio S, Mattecucci C, Matoskova B, Nagase T, Nomura N, Di Fiore PP et al. UBPY: a growth-regulated human ubiquitin isopeptidase. EMBO J 1998; 17: 3241–3250.

    Article  CAS  Google Scholar 

  39. Byun S, Lee SY, Lee J, Jeong CH, Farrand L, Lim S et al. USP8 is a novel target for overcoming gefitinib resistance in lung cancer. Clin Cancer Res 2013; 19: 3894–3904.

    Article  CAS  Google Scholar 

  40. Mizuno E, Iura T, Mukai A, Yoshimori T, Kitamura N, Komada M . Regulation of epidermal growth factor receptor down-regulation by UBPY-mediated deubiquitination at endosomes. Mol Biol Cell 2005; 16: 5163–5174.

    Article  CAS  Google Scholar 

  41. Niendorf S, Oksche A, Kisser A, Lohler J, Prinz M, Schorle H et al. Essential role of ubiquitin-specific protease 8 for receptor tyrosine kinase stability and endocytic trafficking in vivo. Mol Cell Biol 2007; 27: 5029–5039.

    Article  CAS  Google Scholar 

  42. Shirley S, Micheau O . Targeting c-FLIP in cancer. Cancer Lett 2013; 332: 141–150.

    Article  CAS  Google Scholar 

  43. Kavuri SM, Geserick P, Berg D, Dimitrova DP, Feoktistova M, Siegmund D et al. Cellular FLICE-inhibitory protein (cFLIP) isoforms block CD95- and TRAIL death receptor-induced gene induction irrespective of processing of caspase-8 or cFLIP in the death-inducing signaling complex. J Biol Chem 2011; 286: 16631–16646.

    Article  CAS  Google Scholar 

  44. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 2004; 6: 1–6.

    Article  CAS  Google Scholar 

  45. Yeh WC, Itie A, Elia AJ, Ng M, Shu HB, Wakeham A et al. Requirement for casper (c-FLIP) in regulation of death receptor-induced apoptosis and embryonic development. Immunity 2000; 12: 633–642.

    Article  CAS  Google Scholar 

  46. Dillon CP, Oberst A, Weinlich R, Janke LJ, Kang TB, Ben-Moshe T et al. Survival function of the FADD-CASPASE-8-cFLIP(L) complex. Cell Rep 2012; 1: 401–407.

    Article  CAS  Google Scholar 

  47. Vandenabeele P, Melino G . The flick of a switch: which death program to choose? Cell Death Differ 2012; 19: 1093–1095.

    Article  CAS  Google Scholar 

  48. Feoktistova M, Geserick P, Kellert B, Dimitrova DP, Langlais C, Hupe M et al. cIAPs block ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol Cell 2011; 43: 449–463.

    Article  CAS  Google Scholar 

  49. Tenev T, Bianchi K, Darding M, Broemer M, Langlais C, Wallberg F et al. The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol Cell 2011; 43: 432–448.

    Article  CAS  Google Scholar 

  50. Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P, Pop C et al. Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 2011; 471: 363–367.

    Article  CAS  Google Scholar 

  51. O'Donnell MA, Perez-Jimenez E, Oberst A, Ng A, Massoumi R, Xavier R et al. Caspase 8 inhibits programmed necrosis by processing CYLD. Nat Cell Biol 2011; 13: 1437–1442.

    Article  CAS  Google Scholar 

  52. Geserick P, Hupe M, Moulin M, Wong WW, Feoktistova M, Kellert B et al. Cellular IAPs inhibit a cryptic CD95-induced cell death by limiting RIP1 kinase recruitment. J Cell Biol 2009; 187: 1037–1054.

    Article  CAS  Google Scholar 

  53. Panner A, Crane CA, Weng C, Feletti A, Fang S, Parsa AT et al. Ubiquitin-specific protease 8 links the PTEN-Akt-AIP4 pathway to the control of FLIPS stability and TRAIL sensitivity in glioblastoma multiforme. Cancer Res 2010; 70: 5046–5053.

    Article  CAS  Google Scholar 

  54. den Hollander MW, Gietema JA, de Jong S, Walenkamp AM, Reyners AK, Oldenhuis CN et al. Translating TRAIL-receptor targeting agents to the clinic. Cancer Lett 2013; 332: 194–201.

    Article  CAS  Google Scholar 

  55. Stuckey DW, Shah K . TRAIL on trial: preclinical advances in cancer therapy. Trends Mol Med 2013; 19: 685–694.

    Article  CAS  Google Scholar 

  56. Ashkenazi A, Pai RC, Fong S, Leung S, Lawrence DA, Marsters SA et al. Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 1999; 104: 155–162.

    Article  CAS  Google Scholar 

  57. Maksimovic-Ivanic D, Stosic-Grujicic S, Nicoletti F, Mijatovic S . Resistance to TRAIL and how to surmount it. Immunol Res 2012; 52: 157–168.

    Article  CAS  Google Scholar 

  58. Soria JC, Mark Z, Zatloukal P, Szima B, Albert I, Juhasz E et al. Randomized phase II study of dulanermin in combination with paclitaxel, carboplatin, and bevacizumab in advanced non-small-cell lung cancer. J Clin Oncol 2011; 29: 4442–4451.

    Article  CAS  Google Scholar 

  59. Soria JC, Smit E, Khayat D, Besse B, Yang X, Hsu CP et al. Phase 1b study of dulanermin (recombinant human Apo2L/TRAIL) in combination with paclitaxel, carboplatin, and bevacizumab in patients with advanced non-squamous non-small-cell lung cancer. J Clin Oncol 2010; 28: 1527–1533.

    Article  CAS  Google Scholar 

  60. Oh YM, Lee SB, Choi J, Suh HY, Shim S, Song YJ et al. USP8 modulates ubiquitination of LRIG1 for Met degradation. Sci Rep 2014; 4: 4980.

    Article  CAS  Google Scholar 

  61. Guedat P, Colland F . Patented small molecule inhibitors in the ubiquitin proteasome system. BMC Biochem 2007; 8: S14.

    Article  Google Scholar 

  62. Pyeon D, Newton MA, Lambert PF, den Boon JA, Sengupta S, Marsit CJ et al. Fundamental differences in cell cycle deregulation in human papillomavirus-positive and human papillomavirus-negative head/neck and cervical cancers. Cancer Res 2007; 67: 4605–4619.

    Article  CAS  Google Scholar 

  63. Talantov D, Mazumder A, Yu JX, Briggs T, Jiang Y, Backus J et al. Novel genes associated with malignant melanoma but not benign melanocytic lesions. Clin Cancer Res 2005; 11: 7234–7242.

    Article  CAS  Google Scholar 

  64. Lee EW, Seong D, Seo J, Jeong M, Lee HK, Song J . USP11-dependent selective cIAP2 deubiquitylation and stabilization determine sensitivity to Smac mimetics. Cell Death Differ 2015; 22: 1463–1476.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT and Future Planning (NRF-2015R1A3A2066581) (to J Song) and by the Ministry of Education (2012R1A6A3A04040105) (to E-WL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Song.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website .

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, M., Lee, EW., Seong, D. et al. USP8 suppresses death receptor-mediated apoptosis by enhancing FLIPL stability. Oncogene 36, 458–470 (2017). https://doi.org/10.1038/onc.2016.215

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.215

This article is cited by

Search

Quick links