Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Functional interaction of histone deacetylase 5 (HDAC5) and lysine-specific demethylase 1 (LSD1) promotes breast cancer progression

Abstract

We have previously demonstrated that crosstalk between lysine-specific demethylase 1 (LSD1) and histone deacetylases (HDACs) facilitates breast cancer proliferation. However, the underlying mechanisms are largely unknown. Here, we report that expression of HDAC5 and LSD1 proteins were positively correlated in human breast cancer cell lines and tissue specimens of primary breast tumors. Protein expression of HDAC5 and LSD1 was significantly increased in primary breast cancer specimens in comparison with matched-normal adjacent tissues. Using HDAC5 deletion mutants and co-immunoprecipitation studies, we showed that HDAC5 physically interacted with the LSD1 complex through its domain containing nuclear localization sequence and phosphorylation sites. Although the in vitro acetylation assays revealed that HDAC5 decreased LSD1 protein acetylation, small interfering RNA (siRNA)-mediated HDAC5 knockdown did not alter the acetylation level of LSD1 in MDA-MB-231 cells. Overexpression of HDAC5 stabilized LSD1 protein and decreased the nuclear level of H3K4me1/me2 in MDA-MB-231 cells, whereas loss of HDAC5 by siRNA diminished LSD1 protein stability and demethylation activity. We further demonstrated that HDAC5 promoted the protein stability of USP28, a bona fide deubiquitinase of LSD1. Overexpression of USP28 largely reversed HDAC5-KD-induced LSD1 protein degradation, suggesting a role of HDAC5 as a positive regulator of LSD1 through upregulation of USP28 protein. Depletion of HDAC5 by shRNA hindered cellular proliferation, induced G1 cell cycle arrest, and attenuated migration and colony formation of breast cancer cells. A rescue study showed that increased growth of MDA-MB-231 cells by HDAC5 overexpression was reversed by concurrent LSD1 depletion, indicating that tumor-promoting activity of HDAC5 is an LSD1 dependent function. Moreover, overexpression of HDAC5 accelerated cellular proliferation and promoted acridine mutagen ICR191-induced transformation of MCF10A cells. Taken together, these results suggest that HDAC5 is critical in regulating LSD1 protein stability through post-translational modification, and the HDAC5–LSD1 axis has an important role in promoting breast cancer development and progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 2004; 119: 941–953.

    Article  CAS  PubMed  Google Scholar 

  2. Lee MG, Wynder C, Cooch N, Shiekhattar R . An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 2005; 437: 432–435.

    Article  CAS  PubMed  Google Scholar 

  3. Huang Y, Marton LJ, Woster PM, Casero RA . Polyamine analogues targeting epigenetic gene regulation. Essays Biochem. 2009; 46: 95–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee M, Wynder C, Cooch N, Shiekhattar R . An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 2005; 437: 432–435.

    Article  CAS  PubMed  Google Scholar 

  5. Garcia-Bassets I, Kwon YS, Telese F, Prefontaine GG, Hutt KR, Cheng CS et al. Histone methylation-dependent mechanisms impose ligand dependency for gene activation by nuclear receptors. Cell 2007; 128: 505–518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lim S, Janzer A, Becker A, Zimmer A, Schule R, Buettner R et al. Lysine-specific demethylase 1 (LSD1) is highly expressed in ER-negative breast cancers and a biomarker predicting aggressive biology. Carcinogenesis 2010; 31: 512–520.

    Article  CAS  PubMed  Google Scholar 

  7. Metzger E, Wissmann M, Yin N, Muller J, Schneider R, Peters A et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 2005; 437: 436–439.

    Article  CAS  PubMed  Google Scholar 

  8. Zhu Q, Huang Y, Marton LJ, Woster PM, Davidson NE, Casero RA Jr. . Polyamine analogs modulate gene expression by inhibiting lysine-specific demethylase 1 (LSD1) and altering chromatin structure in human breast cancer cells. Amino Acids 2012; 42: 887–898.

    Article  CAS  PubMed  Google Scholar 

  9. Huang Y, Greene E, Murray Stewart T, Goodwin AC, Baylin SB, Woster PM et al. Inhibition of lysine-specific demethylase 1 by polyamine analogues results in reexpression of aberrantly silenced genes. Proc Natl Acad Sci U S A 2007; 104: 8023–8028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vasilatos SN, Katz TA, Oesterreich S, Wan Y, Davidson NE, Huang Y . Crosstalk between lysine-specific demethylase 1 (LSD1) and histone deacetylases mediates antineoplastic efficacy of HDAC inhibitors in human breast cancer cells. Carcinogenesis 2013; 34: 1196–1207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Serce N, Gnatzy A, Steiner S, Lorenzen H, Kirfel J, Buettner R . Elevated expression of LSD1 (Lysine-specific demethylase 1) during tumour progression from pre-invasive to invasive ductal carcinoma of the breast. BMC Clin Pathol 2012; 12: 13.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Huang Y, Stewart TM, Wu Y, Baylin SB, Marton LJ, Perkins B et al. Novel oligoamine analogues inhibit lysine-specific demethylase 1 and induce reexpression of epigenetically silenced genes. Clin Cancer Res 2009; 15: 7217–7228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nowotarski SL, Pachaiyappan B, Holshouser SL, Kutz CJ, Li Y, Huang Y et al. Structure-activity study for (bis)ureidopropyl- and (bis)thioureidopropyldiamine LSD1 inhibitors with 3-5-3 and 3-6-3 carbon backbone architectures. Bioorg Med Chem 2015; 23: 1601–1612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mohammad HP, Smitheman KN, Kamat CD, Soong D, Federowicz KE, Van Aller GS et al. A DNA hypomethylation signature predicts antitumor activity of LSD1 inhibitors in SCLC. Cancer Cell 2015; 28: 57–69.

    Article  CAS  PubMed  Google Scholar 

  15. Yang XJ, Gregoire S . Class II histone deacetylases: from sequence to function, regulation, and clinical implication. Mol Cell Biol 2005; 25: 2873–2884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Martin M, Kettmann R, Dequiedt F . Class IIa histone deacetylases: regulating the regulators. Oncogene 2007; 26: 5450–5467.

    Article  CAS  PubMed  Google Scholar 

  17. McKinsey TA, Zhang CL, Lu J, Olson EN . Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 2000; 408: 106–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Martin M, Kettmann R, Dequiedt F . Class IIa histone deacetylases: conducting development and differentiation. Int J Dev Biol 2009; 53: 291–301.

    Article  CAS  PubMed  Google Scholar 

  19. Santner SJ, Dawson PJ, Tait L, Soule HD, Eliason J, Mohamed AN et al. Malignant MCF10CA1 cell lines derived from premalignant human breast epithelial MCF10 AT cells. Breast Cancer Res Treat 2001; 65: 101–110.

    Article  CAS  PubMed  Google Scholar 

  20. Wu Y, Wang Y, Yang XH, Kang T, Zhao Y, Wang C et al. The deubiquitinase USP28 stabilizes LSD1 and confers stem-cell-like traits to breast cancer cells. Cell Rep 2013; 5: 224–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Han X, Gui B, Xiong C, Zhao L, Liang J, Sun L et al. Destabilizing LSD1 by Jade-2 promotes neurogenesis: an antibraking system in neural development. Mol Cell 2014; 55: 482–494.

    Article  CAS  PubMed  Google Scholar 

  22. Huang Y, Nayak S, Jankowitz R, Davidson NE, Oesterreich S . Epigenetics in breast cancer: what's new? Breast Cancer Res 2011; 13: 225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Abukhdeir AM, Park BH . P21 and p27: roles in carcinogenesis and drug resistance. Expert Rev Mol Med 2008; 10: e19.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kominsky SL, Argani P, Korz D, Evron E, Raman V, Garrett E et al. Loss of the tight junction protein claudin-7 correlates with histological grade in both ductal carcinoma in situ and invasive ductal carcinoma of the breast. Oncogene 2003; 22: 2021–2033.

    Article  CAS  PubMed  Google Scholar 

  25. Lin T, Ponn A, Hu X, Law BK, Lu J . Requirement of the histone demethylase LSD1 in Snai1-mediated transcriptional repression during epithelial-mesenchymal transition. Oncogene 2010; 29: 4896–4904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen WD, Eshleman JR, Aminoshariae MR, Ma AH, Veloso N, Markowitz SD et al. Cytotoxicity and mutagenicity of frameshift-inducing agent ICR191 in mismatch repair-deficient colon cancer cells. J Natl Cancer Inst 2000; 92: 480–485.

    Article  CAS  PubMed  Google Scholar 

  27. Zientek-Targosz H, Kunnev D, Hawthorn L, Venkov M, Matsui S, Cheney RT et al. Transformation of MCF-10A cells by random mutagenesis with frameshift mutagen ICR191: a model for identifying candidate breast-tumor suppressors. Mol Cancer 2008; 7: 51.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Milde T, Oehme I, Korshunov A, Kopp-Schneider A, Remke M, Northcott P et al. HDAC5 and HDAC9 in medulloblastoma: novel markers for risk stratification and role in tumor cell growth. Clin Cancer Res 2010; 16: 3240–3252.

    Article  CAS  PubMed  Google Scholar 

  29. He P, Liang J, Shao T, Guo Y, Hou Y, Li Y . HDAC5 promotes colorectal cancer cell proliferation by up-regulating DLL4 expression. Int J. Clin Exp Med 2015; 8: 6510–6516.

    CAS  Google Scholar 

  30. Nagasawa S, Sedukhina AS, Nakagawa Y, Maeda I, Kubota M, Ohnuma S et al. LSD1 overexpression is associated with poor prognosis in basal-like breast cancer, and sensitivity to PARP inhibition. PLoS One 2015; 10: e0118002.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Piao L, Suzuki T, Dohmae N, Nakamura Y, Hamamoto R . SUV39H2 methylates and stabilizes LSD1 by inhibiting polyubiquitination in human cancer cells. Oncotarget 2015; 6: 16939–16950.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Shi YJ, Matson C, Lan F, Iwase S, Baba T, Shi Y . Regulation of LSD1 histone demethylase activity by its associated factors. Mol Cell. 2005; 19: 857–864.

    Article  CAS  PubMed  Google Scholar 

  33. Greco TM, Yu F, Guise AJ, Cristea IM . Nuclear import of histone deacetylase 5 by requisite nuclear localization signal phosphorylation. Mol Cell Proteom 2011; 10: M110.004317.

    Article  Google Scholar 

  34. Diefenbacher ME, Popov N, Blake SM, Schulein-Volk C, Nye E, Spencer-Dene B et al. The deubiquitinase USP28 controls intestinal homeostasis and promotes colorectal cancer. J Clin Invest 2014; 124: 3407–3418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Popov N, Wanzel M, Madiredjo M, Zhang D, Beijersbergen R, Bernards R et al. The ubiquitin-specific protease USP28 is required for MYC stability. Nat Cell Biol 2007; 9: 765–774.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang D, Zaugg K, Mak TW, Elledge SJ . A role for the deubiquitinating enzyme USP28 in control of the DNA-damage response. Cell 2006; 126: 529–542.

    Article  CAS  PubMed  Google Scholar 

  37. Sen N, Kumari R, Singh MI, Das S . HDAC5, a key component in temporal regulation of p53-mediated transactivation in response to genotoxic stress. Mol Cell 2013; 52: 406–420.

    Article  CAS  PubMed  Google Scholar 

  38. Traynor AM, Dubey S, Eickhoff JC, Kolesar JM, Schell K, Huie MS et al. Vorinostat (NSC# 701852) in patients with relapsed non-small cell lung cancer: a Wisconsin Oncology Network phase II study. J Thorac Oncol 2009; 4: 522–526.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Luu TH, Morgan RJ, Leong L, Lim D, McNamara M, Portnow J et al. A phase II trial of vorinostat (suberoylanilide hydroxamic acid) in metastatic breast cancer: a California Cancer Consortium study. Clin Cancer Res 2008; 14: 7138–7142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Modesitt SC, Sill M, Hoffman JS, Bender DP . A phase II study of vorinostat in the treatment of persistent or recurrent epithelial ovarian or primary peritoneal carcinoma: a Gynecologic Oncology Group study. Gynecol Oncol 2008; 109: 182–186.

    Article  CAS  PubMed  Google Scholar 

  41. Blumenschein GR Jr, Kies MS, Papadimitrakopoulou VA, Lu C, Kumar AJ, Ricker JL et al. Phase II trial of the histone deacetylase inhibitor vorinostat (Zolinza, suberoylanilide hydroxamic acid, SAHA) in patients with recurrent and/or metastatic head and neck cancer. Invest New Drugs 2008; 26: 81–87.

    Article  CAS  PubMed  Google Scholar 

  42. Shaw PG, Chaerkady R, Wang T, Vasilatos S, Huang Y, Van Houten B et al. Integrated proteomic and metabolic analysis of breast cancer progression. PLoS ONE 2013; 8: e76220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Varghese F, Bukhari AB, Malhotra R, De A . IHC Profiler: an open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples. PLoS ONE 2014; 9: e96801.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ishibashi H, Suzuki T, Suzuki S, Moriya T, Kaneko C, Takizawa T et al. Sex steroid hormone receptors in human thymoma. J Clin Endocrinol Metab 2003; 88: 2309–2317.

    Article  CAS  PubMed  Google Scholar 

  45. Huang Y, Hager ER, Phillips DL, Dunn VR, Hacker A, Frydman B et al. A novel polyamine analog inhibits growth and induces apoptosis in human breast cancer cells. Clin Cancer Res 2003; 9: 2769–2777.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Huang Y, Keen J, Pledgie A, Marton L, Zhu T, Sukumar S et al. Polyamine analogues down-regulate estrogen receptor alpha expression in human breast cancer cells. J Biol Chem 2006; 281: 19055–19063.

    Article  CAS  PubMed  Google Scholar 

  47. Katz TA, Vasilatos SN, Harrington E, Oesterreich S, Davidson NE, Huang Y . Inhibition of histone demethylase, LSD2 (KDM1B), attenuates DNA methylation and increases sensitivity to DNMT inhibitor-induced apoptosis in breast cancer cells. Breast Cancer Res Treat 2014; 146: 99–108.

    Article  CAS  PubMed  Google Scholar 

  48. Huang Y, Vasilatos SN, Boric L, Shaw PG, Davidson NE . Inhibitors of histone demethylation and histone deacetylation cooperate in regulating gene expression and inhibiting growth in human breast cancer cells. Breast Cancer Res Treat 2012; 131: 777–789.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by US Army Breast Cancer Research Program (W81XWH-14-1-0237 to YH; W81XWH-14-1-0238 to NED), Breast Cancer Research Foundation (to NED and SO) and UPCI Genomics Core Facility supported by NCI P30CA047904.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Huang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, C., Vasilatos, S., Bhargava, R. et al. Functional interaction of histone deacetylase 5 (HDAC5) and lysine-specific demethylase 1 (LSD1) promotes breast cancer progression. Oncogene 36, 133–145 (2017). https://doi.org/10.1038/onc.2016.186

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.186

This article is cited by

Search

Quick links