Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lysine demethylase KDM3A regulates breast cancer cell invasion and apoptosis by targeting histone and the non-histone protein p53

Abstract

Invasive growth and apoptosis resistance of breast cancer cells are associated with metastasis and disease relapse. Here we identified that the lysine-specific demethylase KDM3A played a dual role in breast cancer cell invasion and apoptosis by demethylating histone and the non-histone protein p53, respectively. While inducing pro-invasive genes by erasing repressive histone H3 lysine 9 methylation, KDM3A promotes chemoresistance by demethylating p53. KDM3A suppressed pro-apoptotic functions of p53 by erasing p53-K372me1, as this methylation is crucial for the stability of chromatin-bound p53. Unexpectedly, depletion of KDM3A was capable of reactivating mutated p53 to induce the expression of pro-apoptotic genes in breast cancer with mutant p53. Moreover, KDM3A knockdown also potently inhibited tumorigenic potentials of breast cancer stem-like cells and rendered them sensitive to apoptosis induced by chemotherapeutic drugs. Taken together, our results suggest that KDM3A might be a potential therapeutic target for human breast cancer treatment and prevention.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Siegel R, Ma J, Zou Z, Jemal A . Cancer statistics. CA Cancer J Clin 2014; 64: 9–29.

    PubMed  Google Scholar 

  2. Acharyya S, Oskarsson T, Vanharanta S, Malladi S, Kim J, Morris PG et al. A CXCL1 paracrine network links chancer chemoresistance and metastasis. Cell 2012; 150: 165–178.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Comoglio PM, Trusolino L . Invasive growth: from development to metastasis. J Clin Invest 2002; 109: 857–862.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Ding X, Pan H, Li J, Zhong Q, Chen X, Dry SM et al. Epigenetic activation of AP1 promotes squamous cell carcinoma metastasis. Sci Signal 2013; 6: ra28 1–13.

    Article  PubMed  Google Scholar 

  5. Kwon M . Epithelial-to-mesenchymal transition and cancer stem cells: emerging targets for novel cancer therapy. Cancer Gene Ther 2014; 21: 179–180.

    Article  CAS  PubMed  Google Scholar 

  6. Thiery JP, Acloque H, Huang RY, Nieto MA . Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139: 871–890.

    Article  CAS  PubMed  Google Scholar 

  7. Ramadoss S, Chen X, Wang CY . Histone demethylase KDM6B promotes epithelial-mesenchymal transition. J Biol Chem 2012; 287: 44508–44517.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Scully OJ, Bay BH, Yip G, Yu Y . Breast cancer metastasis. Cancer Genomics Proteomics 2012; 9: 311–320.

    CAS  PubMed  Google Scholar 

  9. Alexander S, Friedl P . Cancer invasion and resistance: interconnected processes of disease progression and therapy failure. Trends Mol Med 2012; 18: 13–26.

    Article  PubMed  Google Scholar 

  10. Muller PA, Vousden KH, Norman JC . p53 and its mutants in tumor cell migration and invasion. J Cell Biol 2011; 192: 209–218.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Shetzer Y, Solomon H, Koifman G, Molchadsky A, Horesh S, Rotter V . The paradigm of mutant p53-expressing cancer stem cells and drug resistance. Carcinogenesis 2014; 35: 1196–1208.

    Article  CAS  PubMed  Google Scholar 

  12. Muller PA, Vousden KH . p53 mutations in cancer. Nat Cell Biol 2013; 15: 2–8.

    Article  CAS  PubMed  Google Scholar 

  13. Mizuno H, Spike BT, Wahl GM, Levine AJ . Inactivation of p53 in breast cancers correlates with stem cell transcriptional signatures. Proc Natl Acad Sci USA 2010; 107: 22745–22750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ginestier C, Charafe-Jauffret E, Birnbaum D . p53 and cancer stem cells: the mevalonate connexion. Cell Cycle 2012; 11: 2583–2584.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Freed-Pastor WA, Mizuno H, Zhao X, Langerød A, Moon SH, Rodriguez-Barrueco R et al. Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell 2012; 148: 244–258.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Bannister AJ, Kouzarides T . Regulation of chromatin by histone modifications. Cell Res 2011; 21: 381–395.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Shi Y, Whetstine JR . Dynamic regulation of histone lysine methylation by demethylases. Mol Cell 2007; 25: 1–14.

    Article  CAS  PubMed  Google Scholar 

  18. Kooistra SM, Helin K . Molecular mechanisms and potential functions of histone demethylases. Nat Rev Mol Cell Biol 2012; 13: 297–311.

    Article  CAS  PubMed  Google Scholar 

  19. Bieging KT, Mello SS, Attardi LD . Unravelling mechanisms of p53 mediated tumor suppression. Nat Rev Cancer 2014; 14: 359–370.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Huang J, Perez-Burgos L, Placek BJ, Sengupta R, Richter M, Dorsey JA et al. Repression of p53 activity by Smyd2-mediated methylation. Nature 2006; 444: 629–632.

    Article  CAS  PubMed  Google Scholar 

  21. Huang J, Dorsey J, Chuikov S, Pérez-Burgos L, Zhang X, Jenuwein T et al. G9a and Glp methylate lysine 373 in the tumor suppressor p53. J Biol Chem 2010; 285: 9636–9641.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Shi X, Kachirskaia I, Yamaguchi H, West LE, Wen H, Wang EW et al. Modulation of p53 function by SET8-mediated methylation at lysine 382. Mol Cell 2007; 27: 636–646.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Chuikov S, Kurash JK, Wilson JR, Xiao B, Justin N, Ivanov GS et al. Regulation of p53 activity through lysine methylation. Nature 2004; 432: 353–360.

    Article  CAS  PubMed  Google Scholar 

  24. Malanchi I, Santamaria-Martínez A, Susanto E, Peng H, Lehr HA, Delaloye JF et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 2011; 481: 85–89.

    Article  PubMed  Google Scholar 

  25. Baccelli I, Schneeweiss A, Riethdorf S, Stenzinger A, Schillert A, Vogel V et al. Identification of population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograftassay. Nat Biotechnol 2013; 31: 539–544.

    Article  CAS  PubMed  Google Scholar 

  26. Cheng L, Ramesh AV, Flesken-Nikitin A, Choi J, Nikitin AY . Mouse models for cancer stem cell research. Toxicol Pathol 2010; 38: 62–71.

    Article  PubMed  Google Scholar 

  27. Chang CJ, Chao CH, Xia W, Yang JY, Xiong Y, Li CW et al. p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol 2011; 13: 317–323.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Cordenonsi M, Zanconato F, Azzolin L, Forcato M, Rosato A, Frasson C et al. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 2011; 147: 759–772.

    Article  CAS  PubMed  Google Scholar 

  29. O'Brien CA, Kreso A, Jamieson CH . Cancer stem cells and self-renewal. Clin Cancer Res 2010; 16: 3113–3120.

    Article  CAS  PubMed  Google Scholar 

  30. Okada Y, Scott G, Ray MK, Mishina Y, Zhang Y . Histone demethylase JHDM2A is critical for Tnp1 and Prm1 transcription and spermatogenesis. Nature 2007; 450: 119–123.

    Article  CAS  PubMed  Google Scholar 

  31. Tateishi K, Okada Y, Kallin EM, Zhang Y . Role of Jhdm2a in regulating metabolic gene expression and obesity resistance. Nature 2009; 458: 757–761.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Krieg AJ, Rankin EB, Chan D, Razorenova O, Fernandez S, Giaccia AJ . Regulation of the histone demethylase JMJD1A by hypoxia-inducible factor 1 alpha enhances hypoxic gene expression and tumor growth. Mol Cell Biol 2010; 30: 344–353.

    Article  CAS  PubMed  Google Scholar 

  33. Kuroki S, Matoba S, Akiyoshi M, Matsumura Y, Miyachi H, Mise N et al. Epigenetic regulation of mouse sex determination by the histone demethylase Jmjd1a. Science 2013; 341: 1106–1109.

    Article  CAS  PubMed  Google Scholar 

  34. Boye K, Maelandsmo GM . S100A4 and metastasis: a small actor playing many roles. Am J Pathol 2010; 176: 528–535.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Jiao X, Katiyar S, Willmarth NE, Liu M, Ma X, Flomenberg N et al. c-Jun induces mammary epithelial cellular invasion and breast cancer stem cell expansion. J Biol Chem 2010; 285: 8218–8226.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Vandooren J, Van den Steen PE, Opdenakker G . Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9): the next decade. Crit Rev Biochem Mol Biol 2013; 48: 222–272.

    Article  CAS  PubMed  Google Scholar 

  37. Wade MA, Jones D, Wilson L, Stockley J, Coffey K, Robson CN et al. The histone demethylase enzyme KDM3A is a key estrogen receptor regulator in breast cancer. Nucleic Acids Res 2014; 43: 196–207.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Lane DP . Cancer. p53, guardian of the genome. Nature 1992; 358: 15–16.

    Article  CAS  PubMed  Google Scholar 

  39. Lane D, Levine A . p53 research: the past thirty years and the next thirty years. Cold Spring Harb Perspect Biol 2010; 2: a000893.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kurash JK, Lei H, Shen Q, Marston WL, Granda BW, Fan H et al. Methylation of p53 by Set7/9 mediates p53 acetylation and activity in vivo. Mol Cell 2008; 29: 392–400.

    Article  CAS  PubMed  Google Scholar 

  41. Campaner S, Spreafico F, Burgold T, Doni M, Rosato U, Amati B et al. The methyltransferase Set7/9 (Setd7) is dispensable for the p53-mediated DNA damage response in vivo. Mol Cell 2011; 43: 681–688.

    Article  CAS  PubMed  Google Scholar 

  42. Lehnertz B, Rogalski JC, Schulze FM, Yi L, Lin S, Kast J et al. p53-dependent transcription and tumor suppression are not affected in Set7/9-deficient mice. Mol Cell 2011; 43: 673–680.

    Article  CAS  PubMed  Google Scholar 

  43. Joerger AC, Fersht AR . Structural biology of the tumor suppressor p53 and cancer associated mutants. Adv Cancer Res 2007; 97: 1–23.

    Article  CAS  PubMed  Google Scholar 

  44. Perez RE, Knights CD, Sahu G, Catania J, Kolukula VK, Stoler D et al. Restoration of DNA-binding and growth suppressive activity of mutant forms of p53 via a PCAF-mediated acetylation pathway. J Cell Physiol 2010; 225: 394–405.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Ivanov GS, Ivanova T, Kurash J, Ivanov A, Chuikov S, Gizatullin F et al. Methylation-acetylation interplay activates p53 in response to DNA damage. Mol Cell Biol 2007; 27: 6756–6769.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Ramadoss S, Li J, Ding X, Al Hezaimi K, Wang CY . Transducin β-like protein 1 recruits nuclear factor κB to the target gene promoter for transcriptional activation. Mol Cell Biol 2011; 31: 924–934.

    Article  CAS  PubMed  Google Scholar 

  47. Zeng Q, Li S, Chepeha DB, Giordano TJ, Li J, Zhang H et al. Crosstalk between tumor and endothelial cells promotes tumor angiogenesis by MAPK activation of Notch signaling. Cancer Cell 2005; 8: 13–23.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH grants R3713848 and DE15964 and the Shapiro Family Charitable Foundation. We thank Dr Yi Zhang for the generous gift of KDM3A plasmid.

Author contributions

SR and C-YW conceived ideas. All the authors designed experiments, SR and GG performed experiments. SR and C-YW wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C-Y Wang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramadoss, S., Guo, G. & Wang, CY. Lysine demethylase KDM3A regulates breast cancer cell invasion and apoptosis by targeting histone and the non-histone protein p53. Oncogene 36, 47–59 (2017). https://doi.org/10.1038/onc.2016.174

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.174

This article is cited by

Search

Quick links