Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

RAC1 GTPase promotes the survival of breast cancer cells in response to hyper-fractionated radiation treatment

Subjects

Abstract

Radiation therapy is a staple approach for cancer treatment, whereas radioresistance of cancer cells remains a substantial clinical problem. In response to ionizing radiation (IR) induced DNA damage, cancer cells can sustain/activate pro-survival signaling pathways, leading to apoptotic resistance and induction of cell cycle checkpoint/DNA repair. Previous studies show that Rac1 GTPase is overexpressed/hyperactivated in breast cancer cells and is associated with poor prognosis. Studies from our laboratory reveal that Rac1 activity is necessary for G2/M checkpoint activation and cell survival in response to IR exposure of breast and pancreatic cancer cells. In this study, we investigated the effect of Rac1 on the survival of breast cancer cells treated with hyper-fractionated radiation (HFR), which is used clinically for cancer treatment. Results in this report indicate that Rac1 protein expression is increased in the breast cancer cells that survived HFR compared with parental cells. Furthermore, this increase of Rac1 is associated with enhanced activities of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and nuclear factor-κB (NF-κB) signaling pathways and increased levels of anti-apoptotic protein Bcl-xL and Mcl-1, which are downstream targets of ERK1/2 and NF-κB signaling pathways. Using Rac1-specific inhibitor and dominant-negative mutant N17Rac1, here we demonstrate that Rac1 inhibition decreases the phosphorylation of ERK1/2 and inhibitory κBα (IκBα), as well as the levels of Bcl-xL and Mcl-1 protein in the HFR-selected breast cancer cells. Moreover, inhibition of Rac1 using either small molecule inhibitor or dominant-negative N17Rac1 abrogates clonogenic survival of HFR-selected breast cancer cells and decreases the level of intact poly(ADP-ribose) polymerase, which is indicative of apoptosis induction. Collectively, results in this report suggest that Rac1 signaling is essential for the survival of breast cancer cells subjected to HFR and implicate Rac1 in radioresistance of breast cancer cells. These studies also provide the basis to explore Rac1 as a therapeutic target for radioresistant breast cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. DeSantis C, Siegel R, Jemal A . Cancer treatment and survivorship: facts and figures 2014-2015. Am Cancer Soc 2014. 3–6.

  2. Skvortsova I, Debbage P, Kumar V, Skvortsov S . Radiation resistance: cancer stem cells (CSCs) and their enigmatic pro-survival signaling. Semin Cancer Biol 2015; 35: 39–44.

    Article  CAS  PubMed  Google Scholar 

  3. Valerie K, Yacoub A, Hagan MP, Curiel DT, Fisher PB, Grant S et al. Radiation-induced cell signaling: inside-out and outside-in. Mol Cancer Ther 2007; 6: 789–801.

    Article  CAS  PubMed  Google Scholar 

  4. Hein AL, Ouellette MM, Yan Y . Radiation-induced signaling pathways that promote cancer cell survival (review). Int J Oncol 2014; 45: 1813–1819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S . Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 2004; 73: 39–85.

    Article  CAS  PubMed  Google Scholar 

  6. Wang W, Nag SA, Zhang R . Targeting the NFkappaB signaling pathways for breast cancer prevention and therapy. Curr Med Chem 2015; 22: 264–289.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chen BPC, Li M, Asaithamby A . New insights into the roles of ATM and DNA-PKcs in the cellular response to oxidative stress. Cancer Lett 2012; 327: 103–110.

    Article  CAS  PubMed  Google Scholar 

  8. Baldwin AS . Regulation of cell death and autophagy by IKK and NF-κB: critical mechanisms in immune function and cancer. Immunol Rev 2012; 246: 327–345.

    Article  PubMed  Google Scholar 

  9. Bosco E, Mulloy J, Zheng Y . Rac1 GTPase: a “Rac” of all trades. Cell Mol Life Sci 2009; 66: 370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wertheimer E, Gutierrez-Uzquiza A, Rosemblit C, Lopez-Haber C, Sosa MS, Kazanietz MG . Rac signaling in breast cancer: a tale of GEFs and GAPs. Cell Signal 2012; 24: 353–362.

    Article  CAS  PubMed  Google Scholar 

  11. Heasman SJ, Ridley AJ . Mammalian Rho GTPases: new insights into their functions from in vivo studies. Nat Rev Mol Cell Biol 2008; 9: 690.

    Article  CAS  PubMed  Google Scholar 

  12. Brown JH, Del Re DP, Sussman MA . The Rac and Rho hall of fame: a decade of hypertrophic signaling hits. Circ Res 2006; 98: 730–742.

    Article  CAS  PubMed  Google Scholar 

  13. Eblen ST, Slack JK, Weber MJ, Catling AD . Rac-PAK signaling stimulates extracellular signal-regulated kinase (ERK) activation by regulating formation of MEK1-ERK complexes. Mol Cell Biol 2002; 22: 6023–6033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. King AJ, Sun H, Diaz B, Barnard D, Miao W, Bagrodia S et al. The protein kinase Pak3 positively regulates Raf-1 activity through phosphorylation of serine 338. Nature 1998; 396: 180–183.

    Article  CAS  PubMed  Google Scholar 

  15. Slack-Davis JK, Eblen ST, Zecevic M, Boerner SA, Tarcsafalvi A, Diaz HB et al. PAK1 phosphorylation of MEK1 regulates fibronectin-stimulated MAPK activation. J Cell Biol 2003; 162: 281–291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bokoch GM, Vlahos CJ, Wang Y, Knaus UG, Traynor-Kaplan AE . Rac GTPase interacts specifically with phosphatidylinositol 3-kinase. Biochem J 1996; 315 (Pt 3): 775–779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tolias KF, Cantley LC, Carpenter CL . Rho family GTPases bind to phosphoinositide kinases. J Biol Chem 1995; 270: 17656–17659.

    Article  CAS  PubMed  Google Scholar 

  18. Murga C, Zohar M, Teramoto H, Gutkind JS . Rac1 and RhoG promote cell survival by the activation of PI3K and Akt, independently of their ability to stimulate JNK and NF-kappaB. Oncogene 2002; 21: 207–216.

    Article  CAS  PubMed  Google Scholar 

  19. Gonzalez E, Kou R, Michel T . Rac1 modulates sphingosine 1-phosphate-mediated activation of phosphoinositide 3-kinase/Akt signaling pathways in vascular endothelial cells. J Biol Chem 2006; 281: 3210–3216.

    Article  CAS  PubMed  Google Scholar 

  20. Abbott DW, Holt JT . Mitogen-activated protein kinase kinase 2 activation is essential for progression through the G2/M checkpoint arrest in cells exposed to ionizing radiation. J Biol Chem 1999; 274: 2732–2742.

    Article  CAS  PubMed  Google Scholar 

  21. Tang D, Wu D, Hirao A, Lahti JM, Liu L, Mazza B et al. ERK activation mediates cell cycle arrest and apoptosis after DNA damage independently of p53. J Biol Chem 2002; 277: 12710–12717.

    Article  CAS  PubMed  Google Scholar 

  22. Yan Y, Black CP, Cowan KH . Irradiation-induced G2/M checkpoint response requires ERK1/2 activation. Oncogene 2007; 26: 4689–4698.

    Article  CAS  PubMed  Google Scholar 

  23. Toulany M, Lee K-J, Fattah KR, Lin Y-F, Fehrenbacher B, Schaller M et al. Akt promotes post-irradiation survival of human tumor cells through initiation, progression, and termination of DNA-PKcs–dependent DNA double-strand break repair. Mol Cancer Res 2012; 10: 945–957.

    Article  CAS  PubMed  Google Scholar 

  24. Sahlberg SH, Gustafsson AS, Pendekanti PN, Glimelius B, Stenerlow B . The influence of AKT isoforms on radiation sensitivity and DNA repair in colon cancer cell lines. Tumour Biol 2014; 35: 3525–3534.

    Article  CAS  PubMed  Google Scholar 

  25. Shimura T, Kakuda S, Ochiai Y, Kuwahara Y, Takai Y, Fukumoto M . Targeting the AKT/GSK3β/cyclin D1/Cdk4 survival signaling pathway for eradication of tumor radioresistance acquired by fractionated radiotherapy. Int J Radiat Oncol Biol Phys 2011; 80: 540–548.

    Article  CAS  PubMed  Google Scholar 

  26. Yan Y, Greer PM, Cao PT, Kolb RH, Cowan KH . RAC1 GTPase plays an important role in gamma-irradiation induced G2/M checkpoint activation. Breast Cancer Res 2012; 14: R60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yan Y, Hein AL, Etekpo A, Burchett KM, Lin C, Enke CA et al. Inhibition of RAC1 GTPase sensitizes pancreatic cancer cells to gamma-irradiation. Oncotarget 2014; 5: 10251–10270.

    PubMed  PubMed Central  Google Scholar 

  28. Magné N, Toillon R-A, Bottero V, Didelot C, Houtte PV, Gérard J-P et al. NF-κB modulation and ionizing radiation: mechanisms and future directions for cancer treatment. Cancer Lett 2006; 231: 158–168.

    Article  PubMed  Google Scholar 

  29. Bid HK, Roberts RD, Manchanda PK, Houghton PJ . RAC1: an emerging therapeutic option for targeting cancer angiogenesis and metastasis. Mol Cancer Ther 2013; 12: 1925–1934.

    Article  CAS  PubMed  Google Scholar 

  30. Wetterskog D, Shiu KK, Chong I, Meijer T, Mackay A, Lambros M et al. Identification of novel determinants of resistance to lapatinib in ERBB2-amplified cancers. Oncogene 2014; 33: 966–976.

    Article  CAS  PubMed  Google Scholar 

  31. Skvortsov S, Dudás J, Eichberger P, Witsch-Baumgartner M, Loeffler-Ragg J, Pritz C et al. Rac1 as a potential therapeutic target for chemo-radioresistant head and neck squamous cell carcinomas (HNSCC). Br J Cancer 2014; 110: 2677–2687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Arnold CR, Abdelmoez A, Thurner G, Debbage P, Lukas P, Skvortsov S et al. Rac1 as a multifunctional therapeutic target to prevent and combat cancer metastasis. Oncoscience 2014; 1: 513–521.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dokmanovic M, Hirsch DS, Shen Y, Wu WJ . Rac1 contributes to trastuzumab resistance of breast cancer cells: Rac1 as a potential therapeutic target for the treatment of trastuzumab-resistant breast cancer. Mol Cancer Ther 2009; 8: 1557–1569.

    Article  CAS  PubMed  Google Scholar 

  34. Sooman L, Ekman S, Andersson C, Kultima H, Isaksson A, Johansson F et al. Synergistic interactions between camptothecin and EGFR or RAC1 inhibitors and between imatinib and Notch signaling or RAC1 inhibitors in glioblastoma cell lines. Cancer Chemother Pharmacol 2013; 72: 329–340.

    Article  CAS  PubMed  Google Scholar 

  35. Zhao Y, Wang Z, Jiang Y, Yang C . Inactivation of Rac1 reduces trastuzumab resistance in PTEN deficient and insulin-like growth factor I receptor overexpressing human breast cancer SKBR3 cells. Cancer Lett 2011; 313: 54–63.

    Article  CAS  PubMed  Google Scholar 

  36. Espinha G, Osaki J, Magalhaes Y, Forti F . Rac1 GTPase-deficient HeLa cells present reduced DNA repair, proliferation, and survival under UV or gamma irradiation. Mol Cell Biochem 2015; 404: 281–297.

    Article  CAS  PubMed  Google Scholar 

  37. Zhao X, Malhotra GK, Lele SM, Lele MS, West WW, Eudy JD et al. Telomerase-immortalized human mammary stem/progenitor cells with ability to self-renew and differentiate. Proc Natl Acad Sci USA 2010; 107: 14146–14151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 2006; 10: 515–527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Subik K, Lee JF, Baxter L, Strzepek T, Costello D, Crowley P et al. The expression patterns of ER, PR, HER2, CK5/6, EGFR, Ki-67 and AR by immunohistochemical analysis in breast cancer cell lines. Breast Cancer (Auckl) 2010; 4: 35–41.

    PubMed Central  Google Scholar 

  40. Schnelzer A, Prechtel D, Knaus U, Dehne K, Gerhard M, Graeff H et al. Rac1 in human breast cancer: overexpression, mutation analysis, and characterization of a new isoform, Rac1b. Oncogene 2000; 19: 3013–3020.

    Article  CAS  PubMed  Google Scholar 

  41. Moore KA, Sethi R, Doanes AM, Johnson TM, Pracyk JB, Kirby M et al. Rac1 is required for cell proliferation and G2/M progression. Biochem J 1997; 326 (Pt 1): 17–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 2009; 16: 3–11.

    Article  CAS  PubMed  Google Scholar 

  43. Lazebnik YA, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC . Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 1994; 371: 346–347.

    Article  CAS  PubMed  Google Scholar 

  44. Leve F, Morgado-Díaz JA . Rho GTPase signaling in the development of colorectal cancer. J Cell Biochem 2012; 113: 2549–2559.

    Article  CAS  PubMed  Google Scholar 

  45. Kunz M . Oncogenes in melanoma: an update. Eur J Cell Biol 2014; 93: 1–10.

    Article  CAS  PubMed  Google Scholar 

  46. Bussink J, van der Kogel AJ, Kaanders JHAM . Activation of the PI3-K/AKT pathway and implications for radioresistance mechanisms in head and neck cancer. Lancet Oncol 2008; 9: 288–296.

    Article  CAS  PubMed  Google Scholar 

  47. Munshi A, Ramesh R . Mitogen-activated protein kinases and their role in radiation response. Genes Cancer 2013; 4: 401–408.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Jiang D, Li D, Cao L, Wang L, Zhu S, Xu T et al. Positive feedback regulation of proliferation in vascular smooth muscle cells stimulated by lipopolysaccharide is mediated through the TLR 4/Rac1/Akt pathway. PLoS One 2014; 9: e92398.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Wang Z, Pedersen E, Basse A, Lefever T, Peyrollier K, Kapoor S et al. Rac1 is crucial for Ras-dependent skin tumor formation by controlling Pak1-Mek-Erk hyperactivation and hyperproliferation in vivo. Oncogene 2010; 29: 3362–3373.

    Article  CAS  PubMed  Google Scholar 

  50. Cuadrado A, Martín-Moldes Z, Ye J, Lastres-Becker I . Transcription factors NRF2 and NF-κB are coordinated effectors of the Rho family, GTP-binding protein RAC1 during inflammation. J Biol Chem 2014; 289: 15244–15258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Myant Kevin B, Cammareri P, McGhee Ewan J, Ridgway Rachel A, Huels David J, Cordero Julia B et al. ROS production and NF-κB activation triggered by RAC1 facilitate WNT-driven intestinal stem cell proliferation and colorectal cancer initiation. Cell Stem Cell 2013; 12: 761–773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Opferman JT . Attacking cancer's Achilles heel: antagonism of anti-apoptotic BCL-2 family members. FEBS J 2015, e-pub ahead of print 21 August 2015 doi:10.1111/febs.13472.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Hata AN, Engelman JA, Faber AC . The BCL2 family: key mediators of the apoptotic response to targeted anticancer therapeutics. Cancer Discov 2015; 5: 475–487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Fiebig AA, Zhu W, Hollerbach C, Leber B, Andrews DW . Bcl-XL is qualitatively different from and ten times more effective than Bcl-2 when expressed in a breast cancer cell line. BMC Cancer 2006; 6: 213.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Gao Y, Dickerson JB, Guo F, Zheng J, Zheng Y . Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci USA 2004; 101: 7618–7623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yan Y, Spieker RS, Kim M, Stoeger SM, Cowan KH . BRCA1-mediated G2/M cell cycle arrest requires ERK1/2 kinase activation. Oncogene 2005; 24: 3285–3296.

    Article  CAS  PubMed  Google Scholar 

  57. Shiao YH, Palli D, Caporaso NE, Alvord WG, Amorosi A, Nesi G et al. Genetic and immunohistochemical analyses of p53 independently predict regional metastasis of gastric cancers. Cancer Epidemiol Biomarkers Prev 2000; 9: 631–633.

    CAS  PubMed  Google Scholar 

  58. Charafe-Jauffret E, Tarpin C, Bardou VJ, Bertucci F, Ginestier C, Braud AC et al. Immunophenotypic analysis of inflammatory breast cancers: identification of an 'inflammatory signature'. J Pathol 2004; 202: 265–273.

    Article  PubMed  Google Scholar 

  59. Pessetto ZY, Yan Y, Bessho T, Natarajan A . Inhibition of BRCT(BRCA1)-phosphoprotein interaction enhances the cytotoxic effect of olaparib in breast cancer cells: a proof of concept study for synthetic lethal therapeutic option. Breast Cancer Res Treat 2012; 134: 511–517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A . The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 1992; 70: 401–410.

    Article  CAS  PubMed  Google Scholar 

  61. Yan Y, Haas JP, Kim M, Sgagias MK, Cowan KH . BRCA1-induced apoptosis involves inactivation of ERK1/2 activities. J Biol Chem 2002; 277: 33422–33430.

    Article  CAS  PubMed  Google Scholar 

  62. Cai Z, Chattopadhyay N, Liu WJ, Chan C, Pignol J-P, Reilly RM . Optimized digital counting colonies of clonogenic assays using ImageJ software and customized macros: comparison with manual counting. Int J Radiat Biol 2011; 87: 1135–1146.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Vimla Band for 76N cells and Dr Toren Finkel for Ad.N17Rac1 and Ad.dl312 adenoviral vectors. This work was supported, in parts, by Pilot Project Funding from 5P30GM106397 to YY and AN, and P50CA127297 to SKB, MMO and YY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Yan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hein, A., Post, C., Sheinin, Y. et al. RAC1 GTPase promotes the survival of breast cancer cells in response to hyper-fractionated radiation treatment. Oncogene 35, 6319–6329 (2016). https://doi.org/10.1038/onc.2016.163

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.163

This article is cited by

Search

Quick links