Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Rad54 and Mus81 cooperation promotes DNA damage repair and restrains chromosome missegregation

Abstract

Rad54 and Mus81 mammalian proteins physically interact and are important for the homologous recombination DNA repair pathway; however, their functional interactions in vivo are poorly defined. Here, we show that combinatorial loss of Rad54 and Mus81 results in hypersensitivity to DNA-damaging agents, defects on both the homologous recombination and non-homologous DNA end joining repair pathways and reduced fertility. We also observed that while Mus81 deficiency diminished the cleavage of common fragile sites, very strikingly, Rad54 loss impaired this cleavage to even a greater extent. The inefficient repair of DNA double-strand breaks (DSBs) in Rad54−/−Mus81−/− cells was accompanied by elevated levels of chromosome missegregation and cell death. Perhaps as a consequence, tumor incidence in Rad54−/−Mus81−/− mice remained comparable to that in Mus81−/− mice. Our study highlights the importance of the cooperation between Rad54 and Mus81 for mediating DNA DSB repair and restraining chromosome missegregation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ciccia A, Elledge SJ . The DNA damage response: making it safe to play with knives. Mol Cell 2010; 40: 179–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Prakash R, Zhang Y, Feng W, Jasin M . Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb Perspect Biol 2015; 7: 4.

    Article  Google Scholar 

  3. Mazin AV, Mazina OM, Bugreev DV, Rossi MJ . Rad54, the motor of homologous recombination. DNA Repair (Amst) 2010; 9: 286–302.

    Article  CAS  Google Scholar 

  4. Ceballos SJ, Heyer WD . Functions of the Snf2/Swi2 family Rad54 motor protein in homologous recombination. Biochim Biophys Acta 2011; 1809: 509–523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Essers J, Hendriks RW, Swagemakers SM, Troelstra C, de Wit J, Bootsma D et al. Disruption of mouse RAD54 reduces ionizing radiation resistance and homologous recombination. Cell 1997; 89: 195–204.

    Article  CAS  PubMed  Google Scholar 

  6. Dronkert ML, Beverloo HB, Johnson RD, Hoeijmakers JH, Jasin M, Kanaar R . Mouse RAD54 affects DNA double-strand break repair and sister chromatid exchange. Mol Cell Biol 2000; 20: 3147–3156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Agarwal S, van Cappellen WA, Guenole A, Eppink B, Linsen SE, Meijering E et al. ATP-dependent and independent functions of Rad54 in genome maintenance. J Cell Biol 2011; 192: 735–750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wesoly J, Agarwal S, Sigurdsson S, Bussen W, Van Komen S, Qin J et al. Differential contributions of mammalian Rad54 paralogs to recombination, DNA damage repair, and meiosis. Mol Cell Biol 2006; 26: 976–989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Essers J, van Steeg H, de Wit J, Swagemakers SM, Vermeij M, Hoeijmakers JH et al. Homologous and non-homologous recombination differentially affect DNA damage repair in mice. EMBO J 2000; 19: 1703–1710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Matsuda M, Miyagawa K, Takahashi M, Fukuda T, Kataoka T, Asahara T et al. Mutations in the RAD54 recombination gene in primary cancers. Oncogene 1999; 18: 3427–3430.

    Article  CAS  PubMed  Google Scholar 

  11. Hussain SA, Palmer DH, Moon S, Rea DW . Endocrine therapy and other targeted therapies for metastatic breast cancer. Expert Rev Anticancer Ther 2004; 4: 1179–1195.

    Article  CAS  PubMed  Google Scholar 

  12. Mazina OM, Mazin AV . Human Rad54 protein stimulates human Mus81-Eme1 endonuclease. Proc Natl Acad Sci USA 2008; 105: 18249–18254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sarbajna S, West SC . Holliday junction processing enzymes as guardians of genome stability. Trends Biochem Sci 2014; 39: 409–419.

    Article  CAS  PubMed  Google Scholar 

  14. McPherson JP, Lemmers B, Chahwan R, Pamidi A, Migon E, Matysiak-Zablocki E et al. Involvement of mammalian Mus81 in genome integrity and tumor suppression. Science 2004; 304: 1822–1826.

    Article  CAS  PubMed  Google Scholar 

  15. Pamidi A, Cardoso R, Hakem A, Matysiak-Zablocki E, Poonepalli A, Tamblyn L et al. Functional interplay of p53 and Mus81 in DNA damage responses and cancer. Cancer Res 2007; 67: 8527–8535.

    Article  CAS  PubMed  Google Scholar 

  16. Dendouga N, Gao H, Moechars D, Janicot M, Vialard J, McGowan CH . Disruption of murine Mus81 increases genomic instability and DNA damage sensitivity but does not promote tumorigenesis. Mol Cell Biol 2005; 25: 7569–7579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hiyama T, Katsura M, Yoshihara T, Ishida M, Kinomura A, Tonda T et al. Haploinsufficiency of the Mus81-Eme1 endonuclease activates the intra-S-phase and G2/M checkpoints and promotes rereplication in human cells. Nucleic Acids Res 2006; 34: 880–892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. El Ghamrasni S, Pamidi A, Halaby MJ, Bohgaki M, Cardoso R, Li L et al. Inactivation of chk2 and mus81 leads to impaired lymphocytes development, reduced genomic instability, and suppression of cancer. PLoS Genet 2011; 7: e1001385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wechsler T, Newman S, West SC . Aberrant chromosome morphology in human cells defective for Holliday junction resolution. Nature 2011; 471: 642–646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. El Ghamrasni S, Cardoso R, Halaby MJ, Zeegers D, Harding S, Kumareswaran R et al. Cooperation of Blm and Mus81 in development, fertility, genomic integrity and cancer suppression. Oncogene 2015; 34: 1780–1789.

    Article  CAS  PubMed  Google Scholar 

  21. Wu F, Liu SY, Tao YM, Ou DP, Fang F, Yang LY . Decreased expression of methyl methansulfonate and ultraviolet-sensitive gene clone 81 (Mus81) is correlated with a poor prognosis in patients with hepatocellular carcinoma. Cancer 2008; 112: 2002–2010.

    Article  CAS  PubMed  Google Scholar 

  22. Wu F, Shirahata A, Sakuraba K, Kitamura Y, Goto T, Saito M et al. Down-regulation of Mus81 as a potential marker for the malignancy of gastric cancer. Anticancer Res 2010; 30: 5011–5014.

    PubMed  Google Scholar 

  23. Wu F, Shirahata A, Sakuraba K, Kitamura Y, Goto T, Saito M et al. Downregulation of Mus81 as a novel prognostic biomarker for patients with colorectal carcinoma. Cancer Sci 2011; 102: 472–477.

    Article  CAS  PubMed  Google Scholar 

  24. McPherson JP, Tamblyn L, Elia A, Migon E, Shehabeldin A, Matysiak-Zablocki E et al. Lats2/Kpm is required for embryonic development, proliferation control and genomic integrity. EMBO J 2004; 23: 3677–3688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chu WK, Hickson ID . RecQ helicases: multifunctional genome caretakers. Nat Rev Cancer 2009; 9: 644–654.

    Article  CAS  PubMed  Google Scholar 

  26. Zhu JY, Abate M, Rice PW, Cole CN . The ability of simian virus 40 large T antigen to immortalize primary mouse embryo fibroblasts cosegregates with its ability to bind to p53. J Virol 1991; 65: 6872–6880.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Jackson SP, Bartek J . The DNA-damage response in human biology and disease. Nature 2009; 461: 1071–1078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hakem R . DNA-damage repair; the good, the bad, and the ugly. EMBO J 2008; 27: 589–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Boddy MN, Lopez-Girona A, Shanahan P, Interthal H, Heyer WD, Russell P . Damage tolerance protein Mus81 associates with the FHA1 domain of checkpoint kinase Cds1. Mol Cell Biol 2000; 20: 8758–8766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Interthal H, Heyer WD . MUS81 encodes a novel helix-hairpin-helix protein involved in the response to UV- and methylation-induced DNA damage in Saccharomyces cerevisiae. Mol Gen Genet 2000; 263: 812–827.

    Article  CAS  PubMed  Google Scholar 

  31. Hanada K, Budzowska M, Modesti M, Maas A, Wyman C, Essers J et al. The structure-specific endonuclease Mus81-Eme1 promotes conversion of interstrand DNA crosslinks into double-strands breaks. EMBO J 2006; 25: 4921–4932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. McManus KJ, Barrett IJ, Nouhi Y, Hieter P . Specific synthetic lethal killing of RAD54B-deficient human colorectal cancer cells by FEN1 silencing. Proc Natl Acad Sci USA 2009; 106: 3276–3281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ahuja D, Saenz-Robles MT, Pipas JM . SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation. Oncogene 2005; 24: 7729–7745.

    Article  CAS  PubMed  Google Scholar 

  34. Tan TL, Essers J, Citterio E, Swagemakers SM, de Wit J, Benson FE et al. Mouse Rad54 affects DNA conformation and DNA-damage-induced Rad51 foci formation. Curr Biol 1999; 9: 325–328.

    Article  CAS  PubMed  Google Scholar 

  35. Helleday T . The underlying mechanism for the PARP and BRCA synthetic lethality: clearing up the misunderstandings. Mol Oncol 2011; 5: 387–393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mao Z, Jiang Y, Liu X, Seluanov A, Gorbunova V . DNA repair by homologous recombination, but not by nonhomologous end joining, is elevated in breast cancer cells. Neoplasia 2009; 11: 683–691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ying S, Minocherhomji S, Chan KL, Palmai-Pallag T, Chu WK, Wass T et al. MUS81 promotes common fragile site expression. Nat Cell Biol 2013; 15: 1001–1007.

    Article  CAS  PubMed  Google Scholar 

  38. Naim V, Wilhelm T, Debatisse M, Rosselli F . ERCC1 and MUS81-EME1 promote sister chromatid separation by processing late replication intermediates at common fragile sites during mitosis. Nat Cell Biol 2013; 15: 1008–1015.

    Article  CAS  PubMed  Google Scholar 

  39. Garner E, Kim Y, Lach FP, Kottemann MC, Smogorzewska A . Human GEN1 and the SLX4-associated nucleases MUS81 and SLX1 are essential for the resolution of replication-induced Holliday junctions. Cell Rep 2013; 5: 207–215.

    Article  CAS  PubMed  Google Scholar 

  40. Pepe A, West SC . MUS81-EME2 promotes replication fork restart. Cell Rep 2014; 7: 1048–1055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Durkin SG, Glover TW . Chromosome fragile sites. Annu Rev Genet 2007; 41: 169–192.

    Article  CAS  PubMed  Google Scholar 

  42. Ozeri-Galai E, Bester AC, Kerem B . The complex basis underlying common fragile site instability in cancer. Trends Genet 2012; 28: 295–302.

    Article  CAS  PubMed  Google Scholar 

  43. Heyer WD, Li X, Rolfsmeier M, Zhang XP . Rad54: the Swiss Army knife of homologous recombination? Nucleic Acids Res 2006; 34: 4115–4125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sandra Muñoz-Galván CT, Blanco MG, Schwartz EK, Ehmsen KT, West SC, Heyer W-D et al. Distinct roles of Mus81, Yen1, Slx1-Slx4, and Rad1 nucleases in the repair of replication-born double-strand breaks by sister chromatid exchange. Mol Cell Biol 2012; 32: 1592–1603.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Canadian Institute of Health Research (RH). We thank P McPherson and members of the RH laboratory for helpful discussions and critical reading of the manuscript. In addition, we thank S Hakem for editing the manuscript and R Kanaar for providing Rad54−/− mice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Hakem.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghamrasni, S., Cardoso, R., Li, L. et al. Rad54 and Mus81 cooperation promotes DNA damage repair and restrains chromosome missegregation. Oncogene 35, 4836–4845 (2016). https://doi.org/10.1038/onc.2016.16

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.16

This article is cited by

Search

Quick links