Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Neuroendocrine prostate cancer (NEPCa) increased the neighboring PCa chemoresistance via altering the PTHrP/p38/Hsp27/androgen receptor (AR)/p21 signals

Abstract

Prostatic neuroendocrine cells (NE) are an integral part of prostate cancer (PCa) and are associated with PCa progression. As the current androgen deprivation therapy with anti-androgens may promote the neuroendocrine PCa (NEPCa) development, and few therapies can effectively suppress NEPCa, understanding the impact of NEPCa on PCa progression may help us to develop better therapies to battle PCa. Here, we found NEPCa cells could increase the docetaxel resistance of their neighboring PCa cells. Mechanism dissection revealed that through secretion of PTHrP, NEPCa cells could alter the p38/MAPK/Hsp27 signals in their neighboring PCa cells that resulted in increased androgen receptor (AR) activity via promoting AR nuclear translocation. The consequences of increased AR function might then increase docetaxel resistance via increasing p21 expression. In vivo xenograft mice experiments also confirmed that NEPCa could increase the docetaxel resistance of neighboring PCa, and targeting this newly identified PTHrP/p38/Hsp27/AR/p21 signaling pathway with either p38 inhibitor (SB203580) or shPTHrP may result in improving/restoring the docetaxel sensitivity to better suppress PCa.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A . Global cancer statistics, 2012. CA Cancer J Clin 2015; 65: 87–108.

    Article  PubMed  Google Scholar 

  2. Karantanos T, Corn PG, Thompson TC . Prostate cancer progression after androgen deprivation therapy: mechanisms of castrate resistance and novel therapeutic approaches. Oncogene 2013; 32: 5501–5511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pienta KJ, Smith DC . Advances in prostate cancer chemotherapy: a new era begins. CA Cancer J Clin 2005; 55: 300–318 quiz 23-5.

    Article  PubMed  Google Scholar 

  4. Berthold DR, Pond GR, Soban F, de Wit R, Eisenberger M, Tannock IF . Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer: updated survival in the TAX 327 study. J Clin Oncol 2008; 26: 242–245.

    Article  CAS  PubMed  Google Scholar 

  5. Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, Chi KN et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med 2004; 351: 1502–1512.

    Article  CAS  PubMed  Google Scholar 

  6. Terry S, Beltran H . The many faces of neuroendocrine differentiation in prostate cancer progression. Front Oncol 2014; 4: 60.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yuan TC, Veeramani S, Lin FF, Kondrikou D, Zelivianski S, Igawa T et al. Androgen deprivation induces human prostate epithelial neuroendocrine differentiation of androgen-sensitive LNCaP cells. Endocr Relat Cancer 2006; 13: 151–167.

    Article  CAS  PubMed  Google Scholar 

  8. Abrahamsson PA . Neuroendocrine cells in tumour growth of the prostate. Endocr Relat Cancer 1999; 6: 503–519.

    Article  CAS  PubMed  Google Scholar 

  9. Levine L, Lucci JA 3rd, Pazdrak B, Cheng JZ, Guo YS, Townsend CM Jr. et al. Bombesin stimulates nuclear factor kappa B activation and expression of proangiogenic factors in prostate cancer cells. Cancer Res 2003; 63: 3495–3502.

    CAS  PubMed  Google Scholar 

  10. DaSilva J, Gioeli D, Weber MJ, Parsons SJ . The neuroendocrine-derived peptide parathyroid hormone-related protein promotes prostate cancer cell growth by stabilizing the androgen receptor. Cancer Res 2009; 69: 7402–7411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Conn EM, Botkjaer KA, Kupriyanova TA, Andreasen PA, Deryugina EI, Quigley JP . Comparative analysis of metastasis variants derived from human prostate carcinoma cells: roles in intravasation of VEGF-mediated angiogenesis and uPA-mediated invasion. Am J Pathol 2009; 175: 1638–1652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. DaSilva JO, Amorino GP, Casarez EV, Pemberton B, Parsons SJ . Neuroendocrine-derived peptides promote prostate cancer cell survival through activation of IGF-1 R signaling. Prostate 2013; 73: 801–812.

    Article  CAS  PubMed  Google Scholar 

  13. Jin RJ, Lho Y, Connelly L, Wang Y, Yu X, Saint Jean L et al. The nuclear factor-kappaB pathway controls the progression of prostate cancer to androgen-independent growth. Cancer Res 2008; 68: 6762–6769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang ZQ, Stingl L, Morrison C, Jantsch M, Los M, Schulze-Osthoff K et al. PARP is important for genomic stability but dispensable in apoptosis. Genes Dev 1997; 11: 2347–2358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang XQ, Kondrikov D, Yuan TC, Lin FF, Hansen J, Lin MF . Receptor protein tyrosine phosphatase alpha signaling is involved in androgen depletion-induced neuroendocrine differentiation of androgen-sensitive LNCaP human prostate cancer cells. Oncogene 2003; 22: 6704–6716.

    Article  CAS  PubMed  Google Scholar 

  16. Chung LY, Tang SJ, Sun GH, Chou TY, Yeh TS, Yu SL et al. Galectin-1 promotes lung cancer progression and chemoresistance by upregulating p38 MAPK, ERK, and cyclooxygenase-2. Clin Cancer Res 2012; 18: 4037–4047.

    Article  CAS  PubMed  Google Scholar 

  17. Small GW, Shi YY, Higgins LS, Orlowski RZ . Mitogen-activated protein kinase phosphatase-1 is a mediator of breast cancer chemoresistance. Cancer Res 2007; 67: 4459–4466.

    Article  CAS  PubMed  Google Scholar 

  18. Marengo B, De Ciucis CG, Ricciarelli R, Furfaro AL, Colla R, Canepa E et al. p38MAPK inhibition: a new combined approach to reduce neuroblastoma resistance under etoposide treatment. Cell Death Dis 2013; 4: e589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bruey JM, Ducasse C, Bonniaud P, Ravagnan L, Susin SA, Diaz-Latoud C et al. Hsp27 negatively regulates cell death by interacting with cytochrome c. Nat Cell Biol 2000; 2: 645–652.

    Article  CAS  PubMed  Google Scholar 

  20. O'Shaughnessy RF, Welti JC, Cooke JC, Avilion AA, Monks B, Birnbaum MJ et al. AKT-dependent HspB1 (Hsp27) activity in epidermal differentiation. J Biol Chem 2007; 282: 17297–17305.

    Article  CAS  PubMed  Google Scholar 

  21. Hsu HS, Lin JH, Huang WC, Hsu TW, Su K, Chiou SH et al. Chemoresistance of lung cancer stemlike cells depends on activation of Hsp27. Cancer 2011; 117: 1516–1528.

    Article  CAS  PubMed  Google Scholar 

  22. Hadchity E, Aloy MT, Paulin C, Armandy E, Watkin E, Rousson R et al. Heat shock protein 27 as a new therapeutic target for radiation sensitization of head and neck squamous cell carcinoma. Mol Ther 2009; 17: 1387–1394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xu L, Chen S, Bergan RC . MAPKAPK2 and HSP27 are downstream effectors of p38 MAP kinase-mediated matrix metalloproteinase type 2 activation and cell invasion in human prostate cancer. Oncogene 2006; 25: 2987–2998.

    Article  CAS  PubMed  Google Scholar 

  24. Migliaccio A, Castoria G, Di Domenico M, de Falco A, Bilancio A, Lombardi M et al. Steroid-induced androgen receptor-oestradiol receptor beta-Src complex triggers prostate cancer cell proliferation. EMBO J 2000; 19: 5406–5417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lin J, Adam RM, Santiestevan E, Freeman MR . The phosphatidylinositol 3'-kinase pathway is a dominant growth factor-activated cell survival pathway in LNCaP human prostate carcinoma cells. Cancer Res 1999; 59: 2891–2897.

    CAS  PubMed  Google Scholar 

  26. Berchem GJ, Bosseler M, Sugars LY, Voeller HJ, Zeitlin S, Gelmann EP . Androgens induce resistance to bcl-2-mediated apoptosis in LNCaP prostate cancer cells. Cancer Res 1995; 55: 735–738.

    CAS  PubMed  Google Scholar 

  27. Zoubeidi A, Zardan A, Beraldi E, Fazli L, Sowery R, Rennie P et al. Cooperative interactions between androgen receptor (AR) and heat-shock protein 27 facilitate AR transcriptional activity. Cancer Res 2007; 67: 10455–10465.

    Article  CAS  PubMed  Google Scholar 

  28. Lu S, Jenster G, Epner DE . Androgen induction of cyclin-dependent kinase inhibitor p21 gene: role of androgen receptor and transcription factor Sp1 complex. Mol Endocrinol 2000; 14: 753–760.

    Article  CAS  PubMed  Google Scholar 

  29. Geng H, Rademacher BL, Pittsenbarger J, Huang CY, Harvey CT, Lafortune MC et al. ID1 enhances docetaxel cytotoxicity in prostate cancer cells through inhibition of p21. Cancer Res 2010; 70: 3239–3248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bhardwaj A, Srivastava SK, Singh S, Arora S, Tyagi N, Andrews J et al. CXCL12/CXCR4 signaling counteracts docetaxel-induced microtubule stabilization via p21-activated kinase 4-dependent activation of LIM domain kinase 1. Oncotarget 2014; 5: 11490–11500.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Shah GV, Thomas S, Muralidharan A, Liu Y, Hermonat PL, Williams J et al. Calcitonin promotes in vivo metastasis of prostate cancer cells by altering cell signaling, adhesion, and inflammatory pathways. Endocr Relat Cancer 2008; 15: 953–964.

    Article  CAS  PubMed  Google Scholar 

  32. Dizeyi N, Hedlund P, Bjartell A, Tinzl M, Austild-Tasken K, Abrahamsson PA . Serotonin activates MAP kinase and PI3K/Akt signaling pathways in prostate cancer cell lines. Urol Oncol 2011; 29: 436–445.

    Article  CAS  PubMed  Google Scholar 

  33. Marin-Aguilera M, Codony-Servat J, Reig O, Lozano JJ, Fernandez PL, Pereira MV et al. Epithelial-to-mesenchymal transition mediates docetaxel resistance and high risk of relapse in prostate cancer. Mol Cancer Ther 2014; 13: 1270–1284.

    Article  CAS  PubMed  Google Scholar 

  34. Yuan J, Rozengurt E . PKD, PKD2, and p38 MAPK mediate Hsp27 serine-82 phosphorylation induced by neurotensin in pancreatic cancer PANC-1 cells. J Cell Biochem 2008; 103: 648–662.

    Article  CAS  PubMed  Google Scholar 

  35. Heron-Milhavet L, LeRoith D . Insulin-like growth factor I induces MDM2-dependent degradation of p53 via the p38 MAPK pathway in response to DNA damage. J Biol Chem 2002; 277: 15600–15606.

    CAS  PubMed  Google Scholar 

  36. Kim J, Song G, Gao H, Farmer JL, Satterfield MC, Burghardt RC et al. Insulin-like growth factor II activates phosphatidylinositol 3-kinase-protooncogenic protein kinase 1 and mitogen-activated protein kinase cell Signaling pathways, and stimulates migration of ovine trophectoderm cells. Endocrinology 2008; 149: 3085–3094.

    Article  CAS  PubMed  Google Scholar 

  37. Guo YS, Hellmich MR, Wen XD, Townsend CM Jr. . Activator protein-1 transcription factor mediates bombesin-stimulated cyclooxygenase-2 expression in intestinal epithelial cells. J Biol Chem 2001; 276: 22941–22947.

    Article  CAS  PubMed  Google Scholar 

  38. Park SI, Lee C, Sadler WD, Koh AJ, Jones J, Seo JW et al. Parathyroid hormone-related protein drives a CD11b+Gr1+ cell-mediated positive feedback loop to support prostate cancer growth. Cancer Res 2013; 73: 6574–6583.

    Article  CAS  PubMed  Google Scholar 

  39. Jin RJ, Wang Y, Masumori N, Ishii K, Tsukamoto T, Shappell SB et al. NE-10 neuroendocrine cancer promotes the LNCaP xenograft growth in castrated mice. Cancer Res 2004; 64: 5489–5495.

    Article  CAS  PubMed  Google Scholar 

  40. Domingo-Domenech J, Vidal SJ, Rodriguez-Bravo V, Castillo-Martin M, Quinn SA, Rodriguez-Barrueco R et al. Suppression of acquired docetaxel resistance in prostate cancer through depletion of notch- and hedgehog-dependent tumor-initiating cells. Cancer Cell 2012; 22: 373–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Thadani-Mulero M, Portella L, Sun S, Sung M, Matov A, Vessella RL et al. Androgen receptor splice variants determine taxane sensitivity in prostate cancer. Cancer Res 2014; 74: 2270–2282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhu Y, Liu C, Nadiminty N, Lou W, Tummala R, Evans CP et al. Inhibition of ABCB1 expression overcomes acquired docetaxel resistance in prostate cancer. Mol Cancer Ther 2013; 12: 1829–1836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hirano D, Okada Y, Minei S, Takimoto Y, Nemoto N . Neuroendocrine differentiation in hormone refractory prostate cancer following androgen deprivation therapy. Eur Urol 2004; 45: 586–592 discussion 92.

    Article  CAS  PubMed  Google Scholar 

  44. Qi J, Nakayama K, Cardiff RD, Borowsky AD, Kaul K, Williams R et al. Siah2-dependent concerted activity of HIF and FoxA2 regulates formation of neuroendocrine phenotype and neuroendocrine prostate tumors. Cancer Cell 2010; 18: 23–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dang Q, Li L, Xie H, He D, Chen J, Song W et al. Anti-androgen enzalutamide enhances prostate cancer neuroendocrine (NE) differentiation via altering the infiltrated mast cells —> androgen receptor (AR) —> miRNA32 signals. Mol Oncol 2015; 9: 1241–1251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xiao D, Qu X, Weber HC . GRP receptor-mediated immediate early gene expression and transcription factor Elk-1 activation in prostate cancer cells. Regul Pept 2002; 109: 141–148.

    Article  CAS  PubMed  Google Scholar 

  47. Dizeyi N, Bjartell A, Nilsson E, Hansson J, Gadaleanu V, Cross N et al. Expression of serotonin receptors and role of serotonin in human prostate cancer tissue and cell lines. Prostate 2004; 59: 328–336.

    Article  CAS  PubMed  Google Scholar 

  48. Salido M, Vilches J, Roomans GM . Changes in elemental concentrations in LNCaP cells are associated with a protective effect of neuropeptides on etoposide-induced apoptosis. Cell Biol Int 2004; 28: 397–402.

    Article  CAS  PubMed  Google Scholar 

  49. Vilches J, Salido M, Fernandez-Segura E, Roomans GM . Neuropeptides, apoptosis and ion changes in prostate cancer. Methods of study and recent developments. Histol Histopathol 2004; 19: 951–961.

    CAS  PubMed  Google Scholar 

  50. Harper ME, Glynne-Jones E, Goddard L, Thurston VJ, Griffiths K . Vascular endothelial growth factor (VEGF) expression in prostatic tumours and its relationship to neuroendocrine cells. Br J Cancer 1996; 74: 910–916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bulavin DV, Higashimoto Y, Popoff IJ, Gaarde WA, Basrur V, Potapova O et al. Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase. Nature 2001; 411: 102–107.

    Article  CAS  PubMed  Google Scholar 

  52. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME . Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 1995; 270: 1326–1331.

    Article  CAS  PubMed  Google Scholar 

  53. Corcelle E, Djerbi N, Mari M, Nebout M, Fiorini C, Fenichel P et al. Control of the autophagy maturation step by the MAPK ERK and p38: lessons from environmental carcinogens. Autophagy 2007; 3: 57–59.

    Article  CAS  PubMed  Google Scholar 

  54. Razandi M, Pedram A, Levin ER . Heat shock protein 27 is required for sex steroid receptor trafficking to and functioning at the plasma membrane. Mol Cell Biol 2010; 30: 3249–3261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jia Y, Ransom RF, Shibanuma M, Liu C, Welsh MJ, Smoyer WE . Identification and characterization of hic-5/ARA55 as an hsp27 binding protein. J Biol Chem 2001; 276: 39911–39918.

    Article  CAS  PubMed  Google Scholar 

  56. Lamoureux F, Thomas C, Yin MJ, Fazli L, Zoubeidi A, Gleave ME . Suppression of heat shock protein 27 using OGX-427 induces endoplasmic reticulum stress and potentiates heat shock protein 90 inhibitors to delay castrate-resistant prostate cancer. Eur Urol 2014; 66: 145–155.

    Article  CAS  PubMed  Google Scholar 

  57. Zhao Y, Shen S, Guo J, Chen H, Greenblatt DY, Kleeff J et al. Mitogen-activated protein kinases and chemoresistance in pancreatic cancer cells. J Surg Res 2006; 136: 325–335.

    Article  CAS  PubMed  Google Scholar 

  58. Jazirehi AR, Vega MI, Chatterjee D, Goodglick L, Bonavida B . Inhibition of the Raf-MEK1/2-ERK1/2 signaling pathway, Bcl-xL down-regulation, and chemosensitization of non-Hodgkin's lymphoma B cells by Rituximab. Cancer Res 2004; 64: 7117–7126.

    Article  CAS  PubMed  Google Scholar 

  59. Zelivianski S, Spellman M, Kellerman M, Kakitelashvilli V, Zhou XW, Lugo E et al. ERK inhibitor PD98059 enhances docetaxel-induced apoptosis of androgen-independent human prostate cancer cells. Int J Cancer 2003; 107: 478–485.

    Article  CAS  PubMed  Google Scholar 

  60. Thadani-Mulero M, Nanus DM, Giannakakou P . Androgen receptor on the move: boarding the microtubule expressway to the nucleus. Cancer Res 2012; 72: 4611–4615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fizazi K, Faivre L, Lesaunier F, Delva R, Gravis G, Rolland F et al. Androgen deprivation therapy plus docetaxel and estramustine versus androgen deprivation therapy alone for high-risk localised prostate cancer (GETUG 12): a phase 3 randomised controlled trial. Lancet Oncol 2015; 16: 787–794.

    Article  CAS  PubMed  Google Scholar 

  62. Cerasuolo M, Paris D, Iannotti FA, Melck D, Verde R, Mazzarella E et al. Neuroendocrine transdifferentiation in human prostate cancer cells: an integrated approach. Cancer Res 2015; 75: 2975–2986.

    Article  CAS  PubMed  Google Scholar 

  63. Fan W, Yanase T, Morinaga H, Okabe T, Nomura M, Daitoku H et al. Insulin-like growth factor 1/insulin signaling activates androgen signaling through direct interactions of Foxo1 with androgen receptor. J Biol Chem 2007; 282: 7329–7338.

    Article  CAS  PubMed  Google Scholar 

  64. Leotoing L, Manin M, Monte D, Baron S, Communal Y, Lours C et al. Crosstalk between androgen receptor and epidermal growth factor receptor-signalling pathways: a molecular switch for epithelial cell differentiation. J Mol Endocrinol 2007; 39: 151–162.

    Article  CAS  PubMed  Google Scholar 

  65. Hobisch A, Eder IE, Putz T, Horninger W, Bartsch G, Klocker H et al. Interleukin-6 regulates prostate-specific protein expression in prostate carcinoma cells by activation of the androgen receptor. Cancer Res 1998; 58: 4640–4645.

    CAS  PubMed  Google Scholar 

  66. Ongkeko WM, Burton D, Kiang A, Abhold E, Kuo SZ, Rahimy E et al. Parathyroid hormone related-protein promotes epithelial-to-mesenchymal transition in prostate cancer. PloS One 2014; 9: e85803.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Liao J, Li X, Koh AJ, Berry JE, Thudi N, Rosol TJ et al. Tumor expressed PTHrP facilitates prostate cancer-induced osteoblastic lesions. Int J Cancer 2008; 123: 2267–2278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Niu Y, Altuwaijri S, Lai KP, Wu CT, Ricke WA, Messing EM et al. Androgen receptor is a tumor suppressor and proliferator in prostate cancer. Proc Natl Acad Sci USA 2008; 105: 12182–12187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hu S, Li L, Yeh S, Cui Y, Li X, Chang HC et al. Infiltrating T cells promote prostate cancer metastasis via modulation of FGF11—>miRNA-541—>androgen receptor (AR)—>MMP9 signaling. Mol Oncol 2015; 9: 44–57.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants (CA155477 and CA156700), George Whipple Professorship Endowment and Taiwan Department of Health Clinical Trial, Research Center of Excellence (DOH99-TD-B-111-004 to China Medical University, Taichung, Taiwan) and China 973 Program (2012CB518305). We thank Karen Wolf for help in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J Jin or C Chang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Y., Sun, Y., Hu, S. et al. Neuroendocrine prostate cancer (NEPCa) increased the neighboring PCa chemoresistance via altering the PTHrP/p38/Hsp27/androgen receptor (AR)/p21 signals. Oncogene 35, 6065–6076 (2016). https://doi.org/10.1038/onc.2016.135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.135

This article is cited by

Search

Quick links