Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The ErbB2ΔEx16 splice variant is a major oncogenic driver in breast cancer that promotes a pro-metastatic tumor microenvironment

Abstract

Amplification and overexpression of erbB2/neu proto-oncogene is observed in 20–30% human breast cancer and is inversely correlated with the survival of the patient. Despite this, somatic activating mutations within erbB2 in human breast cancers are rare. However, we have previously reported that a splice isoform of erbB2, containing an in-frame deletion of exon 16 (herein referred to as ErbB2ΔEx16), results in oncogenic activation of erbB2 because of constitutive dimerization of the ErbB2 receptor. Here, we demonstrate that the ErbB2ΔEx16 is a major oncogenic driver in breast cancer that constitutively signals from the cell surface. We further show that inducible expression of the ErbB2ΔEx16 variant in mammary gland of transgenic mice results in the rapid development of metastatic multifocal mammary tumors. Genetic and biochemical characterization of the ErbB2ΔEx16-derived mammary tumors exhibit several unique features that distinguish this model from the conventional ErbB2 ones expressing the erbB2 proto-oncogene in mammary epithelium. Unlike the wild-type ErbB2-derived tumors that express luminal keratins, ErbB2ΔEx16-derived tumors exhibit high degree of intratumoral heterogeneity co-expressing both basal and luminal keratins. Consistent with these distinct pathological features, the ErbB2ΔEx16 tumors exhibit distinct signaling and gene expression profiles that correlate with activation of number of key transcription factors implicated in breast cancer metastasis and cancer stem cell renewal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Andrulis IL, Bull SB, Blackstein ME, Sutherland D, Mak C, Sidlofsky S et al. Neu/erbB-2 amplification identifies a poor-prognosis group of women with node-negative breast cancer. Toronto Breast Cancer Study Group. J Clin Oncol 1998; 16: 1340–1349.

    Article  CAS  Google Scholar 

  2. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL . Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235: 177–182.

    Article  CAS  Google Scholar 

  3. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE et al. Studies of the HER-2/neu proto-oncogene in human breast and ovaian cancer. Science 1989; 244: 707–712.

    Article  CAS  Google Scholar 

  4. Guy CT, Cardiff RD, Muller WJ . Activated neu induces rapid tumor progression. J Biol Chem 1996; 271: 7673–7678.

    Article  CAS  Google Scholar 

  5. Muller WJ, Sinn E, Pattengale PK, Wallace R, Leder P . Single-step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene. Cell 1988; 54: 105–115.

    Article  CAS  Google Scholar 

  6. Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ . Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci USA 1992; 89: 10578–10582.

    Article  CAS  Google Scholar 

  7. Chan R, Muller WJ, Siegel PM . Oncogenic activating mutations in the neu/erbB-2 oncogene are involved in the induction of mammary tumors. Ann N Y Acad Sci 1999; 889: 45–51.

    Article  CAS  Google Scholar 

  8. Siegel PM, Dankort DL, Hardy WR, Muller WJ . Novel activating mutations in the neu proto-oncogene involved in induction of mammary tumors. Mol Cell Biol 1994; 14: 7068–7077.

    Article  CAS  Google Scholar 

  9. Siegel PM, Muller WJ . Mutations affecting conserved cysteine residues within the extracellular domain of Neu promote receptor dimerization and activation. Proc Natl Acad Sci USA 1996; 93: 8878–8883.

    Article  CAS  Google Scholar 

  10. Kwong KY, Hung MC . A novel splice variant of HER2 with increased transformation activity. Mol Carcinog 1998; 23: 62–68.

    Article  CAS  Google Scholar 

  11. Siegel PM, Ryan ED, Cardiff RD, Muller WJ . Elevated expression of activated forms of Neu/ErbB-2 and ErbB-3 are involved in the induction of mammary tumors in transgenic mice: implications for human breast cancer. EMBO J 1999; 18: 2149–2164.

    Article  CAS  Google Scholar 

  12. Alajati A, Sausgruber N, Aceto N, Duss S, Sarret S, Voshol H et al. Mammary tumor formation and metastasis evoked by a HER2 splice variant. Cancer Res 2014; 73: 5320–5327.

    Article  Google Scholar 

  13. Castagnoli L, Iezzi M, Ghedini GC, Ciravolo V, Marzano G, Lamolinara A et al. Activated d16HER2 homodimers and Src kinase mediate optimal efficacy for trastuzumab. Cancer Res 2014; 74: 6248–6259.

    Article  CAS  Google Scholar 

  14. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 2006; 10: 515–527.

    Article  CAS  Google Scholar 

  15. Ursini-Siegel J, Rajput AB, Lu H, Sanguin-Gendreau V, Zuo D, Papavasiliou V et al. Elevated expression of DecR1 impairs ErbB2/Neu-induced mammary tumor development. Mol Cell Biol 2007; 27: 6361–6371.

    Article  CAS  Google Scholar 

  16. Diessner J, Bruttel V, Stein RG, Horn E, Hausler SF, Dietl J et al. Targeting of preexisting and induced breast cancer stem cells with trastuzumab and trastuzumab emtansine (T-DM1). Cell Death Dis 2014; 5: e1149.

    Article  CAS  Google Scholar 

  17. Moody SE, Sarkisian CJ, Hahn KT, Gunther EJ, Pickup S, Dugan KD et al. Conditional activation of Neu in the mammary epithelium of transgenic mice results in reversible pulmonary metastasis. Cancer Cell 2002; 2: 451–461.

    Article  CAS  Google Scholar 

  18. Finkle D, Quan ZR, Asghari V, Kloss J, Ghaboosi N, Mai E et al. HER2-targeted therapy reduces incidence and progression of midlife mammary tumors in female murine mammary tumor virus huHER2-transgenic mice. Clin Cancer Res 2004; 10: 2499–2511.

    Article  CAS  Google Scholar 

  19. DiMeo TA, Anderson K, Phadke P, Fan C, Perou CM, Naber S et al. A novel lung metastasis signature links Wnt signaling with cancer cell self-renewal and epithelial-mesenchymal transition in basal-like breast cancer. Cancer Res 2009; 69: 5364–5373.

    Article  CAS  Google Scholar 

  20. Mitra D, Brumlik MJ, Okamgba SU, Zhu Y, Duplessis TT, Parvani JG et al. An oncogenic isoform of HER2 associated with locally disseminated breast cancer and trastuzumab resistance. Mol Cancer Ther 2009; 8: 2152–2162.

    Article  CAS  Google Scholar 

  21. Clynes RA, Towers TL, Presta LG, Ravetch JV . Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med 2000; 6: 443–446.

    Article  CAS  Google Scholar 

  22. Castiglioni F, Tagliabue E, Campiglio M, Pupa SM, Balsari A, Menard S . Role of exon-16-deleted HER2 in breast carcinomas. Endocrine-Related Cancer 2006; 13: 221–232.

    Article  CAS  Google Scholar 

  23. McCormack VA, Burton A, Dos-Santos-Silva I, Hipwell JH, Dickens C, Salem D et al. International consortium on mammographic density: methodology and population diversity captured across 22 countries. Cancer Epidemiol 2015; 40: 141–151.

    Article  Google Scholar 

  24. Chen Y, Terajima M, Yang Y, Sun L, Ahn YH, Pankova D et al. Lysyl hydroxylase 2 induces a collagen cross-link switch in tumor stroma. J Clin Invest 2015; 125: 1147–1162.

    Article  Google Scholar 

  25. Mouw JK, Yui Y, Damiano L, Bainer RO, Lakins JN, Acerbi I et al. Tissue mechanics modulate microRNA-dependent PTEN expression to regulate malignant progression. Nat Med 2014; 20: 360–367.

    Article  CAS  Google Scholar 

  26. Korsching E, Packeisen J, Liedtke C, Hungermann D, Wulfing P, van Diest PJ et al. The origin of vimentin expression in invasive breast cancer: epithelial-mesenchymal transition, myoepithelial histogenesis or histogenesis from progenitor cells with bilinear differentiation potential? J Pathol 2005; 206: 451–457.

    Article  CAS  Google Scholar 

  27. Yu M, Smolen GA, Zhang J, Wittner B, Schott BJ, Brachtel E et al. A developmentally regulated inducer of EMT, LBX1, contributes to breast cancer progression. Genes Dev 2009; 23: 1737–1742.

    Article  CAS  Google Scholar 

  28. Ranger JJ, Levy DE, Shahalizadeh S, Hallet M, Muller WJ . Identification of a Stat3-dependent transcription regulatory network involved in metastatic progression. Cancer Res 2009; 69: 6823–6830; In Press.

    Article  CAS  Google Scholar 

  29. Jones LM, Broz ML, Ranger JJ, Ozcelik J, Ahn R, Zuo D-M et al. Stat3 establishes an immunosuppressive microenvironment during the early stages of breast carcinogenesis to promote tumor growth and metastasis. Cancer Res 2015; 76: 1416–1428.

    Article  Google Scholar 

  30. Andrechek ER, Hardy WR, Girgis-Gabardo AA, Perry RL, Butler R, Graham FL et al. ErbB2 is required for muscle spindle and myoblast cell survival. Mol Cell Biol 2002; 22: 4714–4722.

    Article  CAS  Google Scholar 

  31. Perry MC, Dufour CR, Eichner LJ, Tsang DW, Deblois G, Muller WJ et al. ERBB2 deficiency alters an E2F-1-dependent adaptive stress response and leads to cardiac dysfunction. Mol Cell Biol 2014; 34: 4232–4243.

    Article  Google Scholar 

  32. Gautrey H, Jackson C, Dittrich AL, Browell D, Lennard T, Tyson-Capper A . SRSF3 and hnRNP H1 regulate a splicing hotspot of HER2 in breast cancer cells. RNA Biol 2015; 12: 1139–1151.

    Article  Google Scholar 

  33. Griffith M, Griffith OL, Mwenifumbo J, Goya R, Morrissy AS, Morin RD et al. Alternative expression analysis by RNA sequencing. Nat Methods 2010; 7: 843–847.

    Article  CAS  Google Scholar 

  34. Dillon RL, Marcotte R, Hennessy BT, Woodgett JR, Mills GB, Muller WJ . Akt1 and akt2 play distinct roles in the initiation and metastatic phases of mammary tumor progression. Cancer Res 2009; 69: 5057–5064.

    Article  CAS  Google Scholar 

  35. Lahlou H, Sanguin-Gendreau V, Zuo D, Cardiff RD, McLean GW, Frame MC et al. Mammary epithelial-specific disruption of the focal adhesion kinase blocks mammary tumor progression. Proc Natl Acad Sci USA 2007; 104: 20302–20307.

    Article  CAS  Google Scholar 

  36. Smyth GK, Michaud J, Scott HS . Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics (Oxford, England) 2005; 21: 2067–2075.

    Article  CAS  Google Scholar 

  37. Ritchie ME, Silver J, Oshlack A, Holmes M, Diyagama D, Holloway A et al. A comparison of background correction methods for two-colour microarrays. Bioinformatics 2007; 23: 2700–2707.

    Article  CAS  Google Scholar 

  38. Smyth GK, Speed T . Normalization of cDNA microarray data. Methods 2003; 31: 265–273.

    Article  CAS  Google Scholar 

  39. Tusher VG, Tibshirani R, Chu G . Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 2001; 98: 5116–5121.

    Article  CAS  Google Scholar 

  40. Janky R, Verfaillie A, Imrichova H, Van de Sande B, Standaert L, Christiaens V et al. iRegulon: from a gene list to a gene regulatory network using large motif and track collections. PLoS Comput Biol 2014; 10: e1003731.

    Article  Google Scholar 

  41. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  Google Scholar 

  42. Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 2006; 439: 353–357.

    Article  CAS  Google Scholar 

  43. Chang JT, Carvalho C, Mori S, Bild AH, Gatza ML, Wang Q et al. A genomic strategy to elucidate modules of oncogenic pathway signaling networks. Mol Cell 2009; 34: 104–114.

    Article  CAS  Google Scholar 

  44. Gatza ML, Lucas JE, Barry WT, Kim JW, Wang Q, Crawford MD et al. A pathway-based classification of human breast cancer. Proc Natl Acad Sci USA 2010; 107: 6994–6999.

    Article  CAS  Google Scholar 

  45. Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform 2013; 14: 128.

    Article  Google Scholar 

  46. Marcotte R, Zhou L, Kim H, Roskelly CD, Muller WJ . c-Src associates with ErbB2 through an interaction between catalytic domains and confers enhanced transforming potential. Mol Cell Biol 2009; 29: 5858–5871.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Jonathan Rayment, Dr Dongmei Zuo, and Ms Virginie Sanguin-Gendreau for their important involvement in this project. This study was supported by grants awarded to WJM from the Terry Fox Foundation (#020002), the Canadian Institutes of Health Research (MOP 93525 and MOP 89751) and the National Institutes of Health PO1 (2PO1CA099031-06A1). WJM is supported by CRC Chair in Molecular Oncology. JT was supported by the Department of Defense Breast Cancer Predoctoral Traineeship award #W81XWH 10-1-0114. ZCH was supported by Susan G Komen Breast Cancer Foundation (CCR14299200) and NIH-NCI (T32-CA009111). ERA is supported by NIH grant R01CA160514. RDC is supported by a US-NCI grant U01 CA141582. MMTV/ErbB2 transgenic mice were a generous donation from Genentech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W J Muller.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turpin, J., Ling, C., Crosby, E. et al. The ErbB2ΔEx16 splice variant is a major oncogenic driver in breast cancer that promotes a pro-metastatic tumor microenvironment. Oncogene 35, 6053–6064 (2016). https://doi.org/10.1038/onc.2016.129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2016.129

Search

Quick links