Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

p63/MT1-MMP axis is required for in situ to invasive transition in basal-like breast cancer

Subjects

Abstract

The transition of ductal carcinoma in situ (DCIS) to invasive breast carcinoma requires tumor cells to cross the basement membrane (BM). However, mechanisms underlying BM transmigration are poorly understood. Here, we report that expression of membrane-type 1 (MT1)-matrix metalloproteinase (MMP), a key component of the BM invasion program, increases during breast cancer progression at the in situ to invasive breast carcinoma transition. In the intraductal xenograft model, MT1-MMP is required for BM transmigration of MCF10DCIS.com breast adenocarcinoma cells and is overexpressed in cell clusters overlying focal BM disruptions and at the invasive tumor front. Mirrored upregulation of p63 and MT1-MMP is observed at the edge of MCF10DCIS.com xenograft tumors and p63 is required for induction of MT1-MMP-dependent invasive program in response to microenvironmental signals. Immunohistochemistry and analysis of public database reveal that p63 and MT1-MMP are upregulated in human basal-like breast tumors suggesting that p63/MT1-MMP axis contributes to progression of basal-like breast cancers with elevated p63 and MT1-MMP levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Kalluri R . Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 2003; 3: 422–433.

    Article  CAS  Google Scholar 

  2. Cowell CF, Weigelt B, Sakr RA, Ng CK, Hicks J, King TA et al. Progression from ductal carcinoma in situ to invasive breast cancer: revisited. Mol Oncol 2013; 7: 859–869.

    Article  Google Scholar 

  3. Sato H, Takino T, Okada Y, Cao J, Shinagawa A, Yamamoto E et al. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature 1994; 370: 61–65.

    Article  CAS  Google Scholar 

  4. Tsunezuka Y, Kinoh H, Takino T, Watanabe Y, Okada Y, Shinagawa A et al. Expression of membrane-type matrix metalloproteinase 1 (MT1-MMP) in tumor cells enhances pulmonary metastasis in an experimental metastasis assay. Cancer Res 1996; 56: 5678–5683.

    CAS  PubMed  Google Scholar 

  5. Hotary KB, Allen ED, Brooks PC, Datta NS, Long MW, Weiss SJ . Membrane type I matrix metalloproteinase usurps tumor growth control imposed by the three-dimensional extracellular matrix. Cell 2003; 114: 33–45.

    Article  CAS  Google Scholar 

  6. Szabova L, Chrysovergis K, Yamada SS, Holmbeck K . MT1-MMP is required for efficient tumor dissemination in experimental metastatic disease. Oncogene 2008; 27: 3274–3281.

    Article  CAS  Google Scholar 

  7. Perentes JY, Kirkpatrick ND, Nagano S, Smith EY, Shaver CM, Sgroi D et al. Cancer cell-associated MT1-MMP promotes blood vessel invasion and distant metastasis in triple-negative mammary tumors. Cancer Res 2011; 71: 4527–4538.

    Article  CAS  Google Scholar 

  8. Sabeh F, Ota I, Holmbeck K, Birkedal-Hansen H, Soloway P, Balbin M et al. Tumor cell traffic through the extracellular matrix is controlled by the membrane-anchored collagenase MT1-MMP. J Cell Biol 2004; 167: 769–781.

    Article  CAS  Google Scholar 

  9. Hotary K, Li XY, Allen E, Stevens SL, Weiss SJ . A cancer cell metalloprotease triad regulates the basement membrane transmigration program. Genes Dev 2006; 20: 2673–2686.

    Article  CAS  Google Scholar 

  10. Wolf K, Wu YI, Liu Y, Geiger J, Tam E, Overall C et al. Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat Cell Biol 2007; 9: 893–904.

    Article  CAS  Google Scholar 

  11. Monteiro P, Rosse C, Castro-Castro A, Irondelle M, Lagoutte E, Paul-Gilloteaux P et al. Endosomal WASH and exocyst complexes control exocytosis of MT1-MMP at invadopodia. J Cell Biol 2013; 203: 1063–1079.

    Article  CAS  Google Scholar 

  12. Okada A, Bellocq JP, Rouyer N, Chenard MP, Rio MC, Chambon P et al. Membrane-type matrix metalloproteinase (MT-MMP) gene is expressed in stromal cells of human colon, breast, and head and neck carcinomas. Proc Natl Acad Sci USA 1995; 92: 2730–2734.

    Article  CAS  Google Scholar 

  13. Nakada M, Nakamura H, Ikeda E, Fujimoto N, Yamashita J, Sato H et al. Expression and tissue localization of membrane-type 1, 2, and 3 matrix metalloproteinases in human astrocytic tumors. Am J Pathol 1999; 154: 417–428.

    Article  CAS  Google Scholar 

  14. Sakakibara M, Koizumi S, Saikawa Y, Wada H, Ichihara T, Sato H et al. Membrane-type matrix metalloproteinase-1 expression and activation of gelatinase A as prognostic markers in advanced pediatric neuroblastoma. Cancer 1999; 85: 231–239.

    Article  CAS  Google Scholar 

  15. Zhai Y, Hotary KB, Nan B, Bosch FX, Munoz N, Weiss SJ et al. Expression of membrane type 1 matrix metalloproteinase is associated with cervical carcinoma progression and invasion. Cancer Res 2005; 65: 6543–6550.

    Article  CAS  Google Scholar 

  16. Ueno H, Nakamura H, Inoue M, Imai K, Noguchi M, Sato H et al. Expression and tissue localization of membrane-types 1, 2, and 3 matrix metalloproteinases in human invasive breast carcinomas. Cancer Res 1997; 57: 2055–2060.

    CAS  PubMed  Google Scholar 

  17. Jones JL, Glynn P, Walker RA . Expression of MMP-2 and MMP-9, their inhibitors, and the activator MT1-MMP in primary breast carcinomas. J Pathol 1999; 189: 161–168.

    Article  CAS  Google Scholar 

  18. Bisson C, Blacher S, Polette M, Blanc JF, Kebers F, Desreux J et al. Restricted expression of membrane type 1-matrix metalloproteinase by myofibroblasts adjacent to human breast cancer cells. Int J Cancer 2003; 105: 7–13.

    Article  CAS  Google Scholar 

  19. Tetu B, Brisson J, Wang CS, Lapointe H, Beaudry G, Blanchette C et al. The influence of MMP-14, TIMP-2 and MMP-2 expression on breast cancer prognosis. Breast Cancer Res 2006; 8: R28.

    Article  Google Scholar 

  20. Muggerud AA, Hallett M, Johnsen H, Kleivi K, Zhou W, Tahmasebpoor S et al. Molecular diversity in ductal carcinoma in situ (DCIS) and early invasive breast cancer. Mol Oncol 2010; 4: 357–368.

    Article  CAS  Google Scholar 

  21. Lee S, Stewart S, Nagtegaal I, Luo J, Wu Y, Colditz G et al. Differentially expressed genes regulating the progression of ductal carcinoma in situ to invasive breast cancer. Cancer Res 2012; 72: 4574–4586.

    Article  CAS  Google Scholar 

  22. Cheung KJ, Gabrielson E, Werb Z, Ewald AJ . Collective invasion in breast cancer requires a conserved basal epithelial program. Cell 2013; 155: 1639–1651.

    Article  CAS  Google Scholar 

  23. Polyak K, Hu M . Do myoepithelial cells hold the key for breast tumor progression? J Mammary Gland Biol Neoplasia 2005; 10: 231–247.

    Article  Google Scholar 

  24. Hu M, Yao J, Carroll DK, Weremowicz S, Chen H, Carrasco D et al. Regulation of in situ to invasive breast carcinoma transition. Cancer Cell 2008; 13: 394–406.

    Article  CAS  Google Scholar 

  25. Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR, Bradley A . p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 1999; 398: 708–713.

    Article  CAS  Google Scholar 

  26. Yang A, Schweitzer R, Sun D, Kaghad M, Walker N, Bronson RT et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 1999; 398: 714–718.

    Article  CAS  Google Scholar 

  27. Carroll DK, Carroll JS, Leong CO, Cheng F, Brown M, Mills AA et al. p63 regulates an adhesion programme and cell survival in epithelial cells. Nat Cell Biol 2006; 8: 551–561.

    Article  CAS  Google Scholar 

  28. Awadelkarim KD, Callens C, Rosse C, Susini A, Vacher S, Rouleau E et al. Quantification of PKC family genes in sporadic breast cancer by qRT-PCR: Evidence that PKCiota/lambda overexpression is an independent prognostic factor. Int J Cancer 2012; 131: 2852–2862.

    Article  CAS  Google Scholar 

  29. Behbod F, Kittrell FS, LaMarca H, Edwards D, Kerbawy S, Heestand JC et al. An intraductal human-in-mouse transplantation model mimics the subtypes of ductal carcinoma in situ. Breast Cancer Res 2009; 11: R66.

    Article  Google Scholar 

  30. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 2006; 10: 515–527.

    Article  CAS  Google Scholar 

  31. Westfall MD, Mays DJ, Sniezek JC, Pietenpol JA . The Delta Np63 alpha phosphoprotein binds the p21 and 14-3-3 sigma promoters in vivo and has transcriptional repressor activity that is reduced by Hay-Wells syndrome-derived mutations. Mol Cell Biol 2003; 23: 2264–2276.

    Article  CAS  Google Scholar 

  32. McDade SS, Henry AE, Pivato GP, Kozarewa I, Mitsopoulos C, Fenwick K et al. Genome-wide analysis of p63 binding sites identifies AP-2 factors as co-regulators of epidermal differentiation. Nucleic Acids Res 2012; 40: 7190–7206.

    Article  CAS  Google Scholar 

  33. Buckley NE, Conlon SJ, Jirstrom K, Kay EW, Crawford NT, O'Grady A et al. The DeltaNp63 proteins are key allies of BRCA1 in the prevention of basal-like breast cancer. Cancer Res 2011; 71: 1933–1944.

    Article  CAS  Google Scholar 

  34. Shekhar MP, Kato I, Nangia-Makker P, Tait L . Comedo-DCIS is a precursor lesion for basal-like breast carcinoma: identification of a novel p63/Her2/neu expressing subgroup. Oncotarget 2013; 4: 231–241.

    Article  Google Scholar 

  35. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 2011; 121: 2750–2767.

    Article  CAS  Google Scholar 

  36. Harmes DC, Bresnick E, Lubin EA, Watson JK, Heim KE, Curtin JC et al. Positive and negative regulation of deltaN-p63 promoter activity by p53 and deltaN-p63-alpha contributes to differential regulation of p53 target genes. Oncogene 2003; 22: 7607–7616.

    Article  CAS  Google Scholar 

  37. Lindsay J, McDade SS, Pickard A, McCloskey KD, McCance DJ . Role of DeltaNp63gamma in epithelial to mesenchymal transition. J Biol Chem 2011; 286: 3915–3924.

    Article  CAS  Google Scholar 

  38. Olsen JR, Oyan AM, Rostad K, Hellem MR, Liu J, Li L et al. p63 attenuates epithelial to mesenchymal potential in an experimental prostate cell model. PLoS One 2013; 8: e62547.

    Article  CAS  Google Scholar 

  39. Tucci P, Agostini M, Grespi F, Markert EK, Terrinoni A, Vousden KH et al. Loss of p63 and its microRNA-205 target results in enhanced cell migration and metastasis in prostate cancer. Proc Natl Acad Sci USA 2012; 109: 15312–15317.

    Article  CAS  Google Scholar 

  40. Balboni AL, Hutchinson JA, DeCastro AJ, Cherukuri P, Liby K, Sporn MB et al. DeltaNp63alpha-mediated activation of bone morphogenetic protein signaling governs stem cell activity and plasticity in normal and malignant mammary epithelial cells. Cancer Res 2013; 73: 1020–1030.

    Article  CAS  Google Scholar 

  41. Chakrabarti R, Wei Y, Hwang J, Hang X, Andres Blanco M, Choudhury A et al. DeltaNp63 promotes stem cell activity in mammary gland development and basal-like breast cancer by enhancing Fzd7 expression and Wnt signalling. Nat Cell Biol 2014; 16: 1004–1015 1-13.

    Article  CAS  Google Scholar 

  42. Santner SJ, Dawson PJ, Tait L, Soule HD, Eliason J, Mohamed AN et al. Malignant MCF10CA1 cell lines derived from premalignant human breast epithelial MCF10AT cells. Breast Cancer Res Treat 2001; 65: 101–110.

    Article  CAS  Google Scholar 

  43. Lehmann BD, Pietenpol JA . Identification and use of biomarkers in treatment strategies for triple-negative breast cancer subtypes. J Pathol 2014; 232: 142–150.

    Article  Google Scholar 

  44. Ribeiro-Silva A, Ramalho LN, Garcia SB, Brandao DF, Chahud F, Zucoloto S . p63 correlates with both BRCA1 and cytokeratin 5 in invasive breast carcinomas: further evidence for the pathogenesis of the basal phenotype of breast cancer. Histopathology 2005; 47: 458–466.

    Article  CAS  Google Scholar 

  45. Matos I, Dufloth R, Alvarenga M, Zeferino LC, Schmitt F . p63, cytokeratin 5, and P-cadherin: three molecular markers to distinguish basal phenotype in breast carcinomas. Virchows Arch 2005; 447: 688–694.

    Article  CAS  Google Scholar 

  46. Livasy CA, Karaca G, Nanda R, Tretiakova MS, Olopade OI, Moore DT et al. Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod Pathol 2006; 19: 264–271.

    Article  CAS  Google Scholar 

  47. Prat A, Cheang MC, Martin M, Parker JS, Carrasco E, Caballero R et al. Prognostic significance of progesterone receptor-positive tumor cells within immunohistochemically defined luminal A breast cancer. J Clin Oncol 2013; 31: 203–209.

    Article  CAS  Google Scholar 

  48. Wolff AC, Hammond ME, Schwartz JN, Hagerty KL, Allred DC, Cote RJ et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol 2007; 25: 118–145.

    Article  CAS  Google Scholar 

  49. Yu K, Lee CH, Tan PH, Hong GS, Wee SB, Wong CY et al. A molecular signature of the Nottingham prognostic index in breast cancer. Cancer Res 2004; 64: 2962–2968.

    Article  CAS  Google Scholar 

  50. Vincent-Salomon A, Lucchesi C, Gruel N, Raynal V, Pierron G, Goudefroye R et al. Integrated genomic and transcriptomic analysis of ductal carcinoma in situ of the breast. Clin Cancer Res 2008; 14: 1956–1965.

    Article  CAS  Google Scholar 

  51. Allred DC, Wu Y, Mao S, Nagtegaal ID, Lee S, Perou CM et al. Ductal carcinoma in situ and the emergence of diversity during breast cancer evolution. Clin Cancer Res 2008; 14: 370–378.

    Article  CAS  Google Scholar 

  52. Hannemann J, Velds A, Halfwerk JB, Kreike B, Peterse JL, van de Vijver MJ . Classification of ductal carcinoma in situ by gene expression profiling. Breast Cancer Res 2006; 8: R61.

    Article  Google Scholar 

  53. Vincent-Salomon A, Pierga JY, Couturier J, d'Enghien CD, Nos C, Sigal-Zafrani B et al. HER2 status of bone marrow micrometastasis and their corresponding primary tumours in a pilot study of 27 cases: a possible tool for anti-HER2 therapy management? Br J Cancer 2007; 96: 654–659.

    Article  CAS  Google Scholar 

  54. Sakurai-Yageta M, Recchi C, Le Dez G, Sibarita JB, Daviet L, Camonis J et al. The interaction of IQGAP1 with the exocyst complex is required for tumor cell invasion downstream of Cdc42 and RhoA. J Cell Biol 2008; 181: 985–998.

    Article  CAS  Google Scholar 

  55. Workman P, Aboagye EO, Balkwill F, Balmain A, Bruder G, Chaplin DJ et al. Guidelines for the welfare and use of animals in cancer research. Br J Cancer 2010; 102: 1555–1577.

    Article  CAS  Google Scholar 

  56. Teuliere J, Faraldo MM, Deugnier MA, Shtutman M, Ben-Ze'ev A, Thiery JP et al. Targeted activation of beta-catenin signaling in basal mammary epithelial cells affects mammary development and leads to hyperplasia. Development 2005; 132: 267–277.

    Article  CAS  Google Scholar 

  57. Lohi J, Lehti K, Valtanen H, Parks WC, Keski-Oja J . Structural analysis and promoter characterization of the human membrane-type matrix metalloproteinase-1 (MT1-MMP) gene. Gene 2000; 242: 75–86.

    Article  CAS  Google Scholar 

  58. Kouwenhoven EN, van Heeringen SJ, Tena JJ, Oti M, Dutilh BE, Alonso ME et al. Genome-wide profiling of p63 DNA-binding sites identifies an element that regulates gene expression during limb development in the 7q21 SHFM1 locus. PLoS Genet 2010; 6: e1001065.

    Article  Google Scholar 

  59. Martynova E, Pozzi S, Basile V, Dolfini D, Zambelli F, Imbriano C et al. Gain-of-function p53 mutants have widespread genomic locations partially overlapping with p63. Oncotarget 2012; 3: 132–143.

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the Breast Cancer Study Group and patients of Institut Curie for the breast tumor samples, Dr G Scita for critical reading of the manuscript, the Nikon Imaging Centre @ Institut Curie-CNRS and Cell and Tissue Imaging Facility of Institut Curie for help with image acquisition, V Dangles-Marie and MA Deugnier for help with the intraductal xenograft model, K Lehti, GP Dotto, C Albiges-Rizo and O Destaing for providing reagents, D Gentien for the gift of breast tumor cell line mRNA samples and M Sefta for correlation analysis of MT1-MMP and p63 expression in breast tumor cell lines. CL was supported by grants from Agence Nationale pour la Recherche and Fondation Pierre-Gilles de Gennes pour la Recherche, EI by a grant from Région Ile-de-France, AG by a grant from Appel à Projet 'Biologie des Systèmes' 2012 du Plan cancer 2009–2013 (INVADE project) and LF and MI by the Incentive and Cooperative Research Programme ‘Breast cancer: cell Invasion and Motility’ of Institut Curie. Funding for this work was provided by grants from ARC (SL220100601356 and SLR20130607099), Ligue Nationale contre le Cancer (Comité de Paris), Agence Nationale pour la Recherche (ANR-08-BLAN-0111) and Institut National du Cancer (2012-1-PL BIO-02-IC-1) to PC and by core funding from Institut Curie and Centre National pour la Recherche Scientifique (CNRS).

Author Contributions

CL designed and performed the experiments, analyzed results and wrote the manuscript. EI, LF, AG, MI, EL and SV performed experiments, JC analyzed clinical samples, HBK and FR analyzed public TNBC transcriptome data set, MG supervised animal experiments, IB and AV-S selected and classified patients and analyzed clinical sample data, PC supervised the project, designed experiments and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C Lodillinsky or P Chavrier.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lodillinsky, C., Infante, E., Guichard, A. et al. p63/MT1-MMP axis is required for in situ to invasive transition in basal-like breast cancer. Oncogene 35, 344–357 (2016). https://doi.org/10.1038/onc.2015.87

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.87

This article is cited by

Search

Quick links