Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A novel association of neuropilin-1 and MUC1 in pancreatic ductal adenocarcinoma: role in induction of VEGF signaling and angiogenesis

Abstract

We report that Mucin1 (MUC1), a transmembrane glycoprotein that is overexpressed in >80% of pancreatic ductal adenocarcinoma (PDA), induced a pro-angiogenic tumor microenvironment by increasing the levels of neuropilin-1 (NRP1, a co-receptor of vascular endothelial growth factor (VEGF)) and its ligand VEGF. Expression of tumor-associated MUC1 (tMUC1) positively correlated with NRP1 levels in human and mouse PDA. Further, tMUC1hi PDA cells secreted high levels of VEGF and expressed high levels of VEGF receptor 2 (VEGFR2) and its phosphorylated forms as compared with tMUC1low/null PDA. This enabled the tMUC1hi/NRP1hi PDA cells to (a) induce endothelial cell tube formation, (b) generate long ectopic blood vessels and (c) enhance distant metastasis in a zebrafish xenograft model. Concurrently, the proteins associated with epithelial-to-mesenchymal transition, N-cadherin and Vimentin, were highly induced in these tMUC1/NRP1hi PDA cells. Hence, blocking signaling via the NRP1–VEGF axis significantly reduced tube formation, new vessel generation and metastasis induced by tMUC1hi PDA cells. Finally, we show that blocking the interaction between VEGF165 and NRP1 with a NRP1 antagonist significantly reduced VEGFR signaling and PDA tumor growth in vivo. Taken together, our data suggest a novel molecular mechanism by which tMUC1 may modulate NRP1-dependent VEGFR signaling in PDA cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

EMT:

epithelial-to-mesenchymal transition

IHC:

immunohistochemistry

NRP1:

neuropilin-1

PCNA:

proliferating cell nuclear antigen

PDA:

pancreatic ductal adenocarcinoma

siRNA:

small interfering RNA

tMUC1:

tumor-associated MUC1

References

  1. Roskoski R Jr . Vascular endothelial growth factor (VEGF) signaling in tumor progression. Crit Rev Oncol Hematol 2007; 62: 179–213.

    Article  PubMed  Google Scholar 

  2. Ferrara N, Davis-Smyth T . The biology of vascular endothelial growth factor. Endocr Rev 1997; 18: 4–25.

    Article  CAS  PubMed  Google Scholar 

  3. Whittle C, Gillespie K, Harrison R, Mathieson PW, Harper SJ . Heterogeneous vascular endothelial growth factor (VEGF) isoform mRNA and receptor mRNA expression in human glomeruli, and the identification of VEGF148 mRNA, a novel truncated splice variant. Clin Sci (Lond) 1999; 97: 303–312.

    Article  CAS  Google Scholar 

  4. Robinson CJ, Stringer SE . The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J Cell Sci 2001; 114: 853–865.

    CAS  PubMed  Google Scholar 

  5. Park JE, Chen HH, Winer J, Houck KA, Ferrara N . Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J Biol Chem 1994; 269: 25646–25654.

    CAS  PubMed  Google Scholar 

  6. Waltenberger J, Claesson-Welsh L, Siegbahn A, Shibuya M, Heldin CH . Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J Biol Chem 1994; 269: 26988–26995.

    CAS  PubMed  Google Scholar 

  7. Seetharam L, Gotoh N, Maru Y, Neufeld G, Yamaguchi S, Shibuya M . A unique signal transduction from FLT tyrosine kinase, a receptor for vascular endothelial growth factor VEGF. Oncogene 1995; 10: 135–147.

    CAS  PubMed  Google Scholar 

  8. Pajusola K, Aprelikova O, Korhonen J, Kaipainen A, Pertovaara L, Alitalo R et al. FLT4 receptor tyrosine kinase contains seven immunoglobulin-like loops and is expressed in multiple human tissues and cell lines. Cancer Res 1992; 52: 5738–5743.

    CAS  PubMed  Google Scholar 

  9. Kaipainen A, Korhonen J, Mustonen T, van Hinsbergh VW, Fang GH, Dumont D et al. Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci USA 1995; 92: 3566–3570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wild JR, Staton CA, Chapple K, Corfe BM . Neuropilins: expression and roles in the epithelium. Int J Exp Pathol 2012; 93: 81–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. He Z, Tessier-Lavigne M . Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. Cell 1997; 90: 739–751.

    Article  CAS  PubMed  Google Scholar 

  12. Prud'homme GJ, Glinka Y . Neuropilins are multifunctional coreceptors involved in tumor initiation, growth, metastasis and immunity. Oncotarget 2012; 3: 921–939.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tordjman R, Lepelletier Y, Lemarchandel V, Cambot M, Gaulard P, Hermine O et al. A neuronal receptor, neuropilin-1, is essential for the initiation of the primary immune response. Nat Immunol 2002; 3: 477–482.

    Article  CAS  PubMed  Google Scholar 

  14. Bruder D, Probst-Kepper M, Westendorf AM, Geffers R, Beissert S, Loser K et al. Neuropilin-1: a surface marker of regulatory T cells. Eur J Immunol 2004; 34: 623–630.

    Article  CAS  PubMed  Google Scholar 

  15. Bagri A, Tessier-Lavigne M, Watts RJ . Neuropilins in tumor biology. Clin Cancer Res 2009; 15: 1860–1864.

    Article  CAS  PubMed  Google Scholar 

  16. Staton CA, Kumar I, Reed MW, Brown NJ . Neuropilins in physiological and pathological angiogenesis. J Pathol 2007; 212: 237–248.

    Article  CAS  PubMed  Google Scholar 

  17. Pan Q, Chanthery Y, Liang WC, Stawicki S, Mak J, Rathore N et al. Blocking neuropilin-1 function has an additive effect with anti-VEGF to inhibit tumor growth. Cancer Cell 2007; 11: 53–67.

    Article  CAS  PubMed  Google Scholar 

  18. Pellet-Many C, Frankel P, Jia H, Zachary I . Neuropilins: structure, function and role in disease. Biochem J 2008; 411: 211–226.

    Article  CAS  PubMed  Google Scholar 

  19. Bielenberg DR, Pettaway CA, Takashima S, Klagsbrun M . Neuropilins in neoplasms: expression, regulation, and function. Exp Cell Res 2006; 312: 584–593.

    Article  CAS  PubMed  Google Scholar 

  20. Latil A, Bieche I, Pesche S, Valeri A, Fournier G, Cussenot O et al. VEGF overexpression in clinically localized prostate tumors and neuropilin-1 overexpression in metastatic forms. Int J Cancer 2000; 89: 167–171.

    Article  CAS  PubMed  Google Scholar 

  21. Binetruy-Tournaire R, Demangel C, Malavaud B, Vassy R, Rouyre S, Kraemer M et al. Identification of a peptide blocking vascular endothelial growth factor (VEGF)-mediated angiogenesis. EMBO J 2000; 19: 1525–1533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Starzec A, Vassy R, Martin A, Lecouvey M, Di Benedetto M, Crepin M et al. Antiangiogenic and antitumor activities of peptide inhibiting the vascular endothelial growth factor binding to neuropilin-1. Life Sci 2006; 79: 2370–2381.

    Article  CAS  PubMed  Google Scholar 

  23. Chang BW, Siccion E, Saif MW . Updates in locally advanced pancreatic cancer. Highlights from the "2010 ASCO Annual Meeting". Chicago, IL, USA. June 4–8, 2010. JOP 2010; 11: 313–316.

    PubMed  Google Scholar 

  24. Lan MS, Batra SK, Qi WN, Metzgar RS, Hollingsworth MA . Cloning and sequencing of a human pancreatic tumor mucin cDNA. J Biol Chem 1990; 265: 15294–15299.

    CAS  PubMed  Google Scholar 

  25. Roy LD, Sahraei M, Subramani DB, Besmer D, Nath S, Tinder TL et al. MUC1 enhances invasiveness of pancreatic cancer cells by inducing epithelial to mesenchymal transition. Oncogene 2011; 30: 1449–1459.

    Article  CAS  PubMed  Google Scholar 

  26. Sahraei M, Roy LD, Curry JM, Teresa TL, Nath S, Besmer D et al. MUC1 regulates PDGFA expression during pancreatic cancer progression. Oncogene 2012; 31: 4935–4945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Besmer DM, Curry JM, Roy LD, Tinder TL, Sahraei M, Schettini J et al. Pancreatic ductal adenocarcinoma mice lacking mucin 1 have a profound defect in tumor growth and metastasis. Cancer Res 2011; 71: 4432–4442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Woo JK, Choi Y, Oh SH, Jeong JH, Choi DH, Seo HS et al. Mucin 1 enhances the tumor angiogenic response by activation of the AKT signaling pathway. Oncogene 2012; 31: 2187–2198.

    Article  CAS  PubMed  Google Scholar 

  29. Lau SK, Weiss LM, Chu PG . Differential expression of MUC1, MUC2, and MUC5AC in carcinomas of various sites: an immunohistochemical study. Am J Clin Pathol 2004; 122: 61–69.

    Article  PubMed  Google Scholar 

  30. Parikh AA, Liu WB, Fan F, Stoeltzing O, Reinmuth N, Bruns CJ et al. Expression and regulation of the novel vascular endothelial growth factor receptor neuropilin-1 by epidermal growth factor in human pancreatic carcinoma. Cancer 2003; 98: 720–729.

    Article  CAS  PubMed  Google Scholar 

  31. Guidolin D, Vacca A, Nussdorfer GG, Ribatti D . A new image analysis method based on topological and fractal parameters to evaluate the angiostatic activity of docetaxel by using the Matrigel assay in vitro. Microvasc Res 2004; 67: 117–124.

    Article  CAS  PubMed  Google Scholar 

  32. Moshal KS, Ferri-Lagneau KF, Leung T . Zebrafish model: worth considering in defining tumor angiogenesis. Trends Cardiovasc Med 2010; 20: 114–119.

    Article  CAS  PubMed  Google Scholar 

  33. Hess-Stumpp H, Haberey M, Thierauch KH . PTK 787/ZK 222584, a tyrosine kinase inhibitor of all known VEGF receptors, represses tumor growth with high efficacy. Chembiochem 2005; 6: 550–557.

    Article  CAS  PubMed  Google Scholar 

  34. Solorzano CC, Baker CH, Bruns CJ, Killion JJ, Ellis LM, Wood J et al. Inhibition of growth and metastasis of human pancreatic cancer growing in nude mice by PTK 787/ZK222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases. Cancer Biother Radiopharm 2001; 16: 359–370.

    Article  CAS  PubMed  Google Scholar 

  35. Takahashi T, Yamaguchi S, Chida K, Shibuya M . A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells. EMBO J 2001; 20: 2768–2778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bernatchez PN, Soker S, Sirois MG . Vascular endothelial growth factor effect on endothelial cell proliferation, migration, and platelet-activating factor synthesis is Flk-1-dependent. J Biol Chem 1999; 274: 31047–31054.

    Article  CAS  PubMed  Google Scholar 

  37. Shibuya M, Claesson-Welsh L . Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res 2006; 312: 549–560.

    Article  CAS  PubMed  Google Scholar 

  38. Nath S, Daneshvar K, Roy LD, Grover P, Kidiyoor A, Mosley L et al. MUC1 induces drug resistance in pancreatic cancer cells via upregulation of multidrug resistance genes. Oncogenesis 2013; 2: e51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Miao HQ, Lee P, Lin H, Soker S, Klagsbrun M . Neuropilin-1 expression by tumor cells promotes tumor angiogenesis and progression. FASEB J 2000; 14: 2532–2539.

    Article  CAS  PubMed  Google Scholar 

  40. Mak P, Leav I, Pursell B, Bae D, Yang X, Taglienti CA et al. ERbeta impedes prostate cancer EMT by destabilizing HIF-1alpha and inhibiting VEGF-mediated snail nuclear localization: implications for Gleason grading. Cancer Cell 2010; 17: 319–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Prud'homme GJ . Cancer stem cells and novel targets for antitumor strategies. Curr Pharm Des 2012; 18: 2838–2849.

    Article  CAS  PubMed  Google Scholar 

  42. Beck B, Driessens G, Goossens S, Youssef KK, Kuchnio A, Caauwe A et al. A vascular niche and a VEGF-Nrp1 loop regulate the initiation and stemness of skin tumours. Nature 2011; 478: 399–403.

    Article  CAS  PubMed  Google Scholar 

  43. Hamerlik P, Lathia JD, Rasmussen R, Wu Q, Bartkova J, Lee M et al. Autocrine VEGF-VEGFR2-Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth. J Exp Med 2012; 209: 507–520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Curry JM, Thompson KJ, Rao SG, Besmer DM, Murphy AM, Grdzelishvili VZ et al. The use of a novel MUC1 antibody to identify cancer stem cells and circulating MUC1 in mice and patients with pancreatic cancer. J Surg Oncol 2013; 107: 713–722.

    Article  CAS  PubMed  Google Scholar 

  45. Tinder TL, Subramani DB, Basu GD, Bradley JM, Schettini J, Million A et al. MUC1 enhances tumor progression and contributes toward immunosuppression in a mouse model of spontaneous pancreatic adenocarcinoma. J. Immunol 2008; 181: 3116–3125.

    Article  CAS  PubMed  Google Scholar 

  46. Xin Y, Li J, Wu J, Kinard R, Weekes CD, Patnaik A et al. Pharmacokinetic and pharmacodynamic analysis of circulating biomarkers of anti-NRP1, a novel antiangiogenesis agent, in two phase I trials in patients with advanced solid tumors. Clin Cancer Res 2012; 18: 6040–6048.

    Article  CAS  PubMed  Google Scholar 

  47. Weekes CD, Beeram M, Tolcher AW, Papadopoulos KP, Gore L, Hegde P et al. A phase I study of the human monoclonal anti-NRP1 antibody MNRP1685A in patients with advanced solid tumors. Invest New Drugs 2014; 32: 653–660.

    Article  CAS  PubMed  Google Scholar 

  48. Patnaik A, LoRusso PM, Messersmith WA, Papadopoulos KP, Gore L, Beeram M et al. A Phase Ib study evaluating MNRP1685A, a fully human anti-NRP1 monoclonal antibody, in combination with bevacizumab and paclitaxel in patients with advanced solid tumors. Cancer Chemother Pharmacol 2014; 73: 951–960.

    Article  CAS  PubMed  Google Scholar 

  49. Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 2003; 4: 437–450.

    Article  CAS  PubMed  Google Scholar 

  50. Spicer AP, Rowse GJ, Lidner TK, Gendler SJ . Delayed mammary tumor progression in Muc-1 null mice. J Biol Chem 1995; 270: 30093–30101.

    Article  CAS  PubMed  Google Scholar 

  51. Schroeder JA, Thompson MC, Gardner MM, Gendler SJ . Transgenic MUC1 interacts with epidermal growth factor receptor and correlates with mitogen-activated protein kinase activation in the mouse mammary gland. J Biol Chem 2001; 276: 13057–13064.

    Article  CAS  PubMed  Google Scholar 

  52. Adham SA, Al Harrasi I, Al Haddabi I, Al Rashdi A, Al Sinawi S, Al Maniri A et al. Immunohistological insight into the correlation between neuropilin-1 and epithelial-mesenchymal transition markers in epithelial ovarian cancer. J Histochem Cythochem 2014; 62: 619–631.

    Article  Google Scholar 

  53. Moshal KS, Ferri-Lagneau KF, Haider J, Pardhanani P, Leung T . Discriminating different cancer cells using a zebrafish in vivo assay. Cancers (Basel) 2011; 3: 4102–4113.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by NIH CA118944-01A1 and NIH CA173668-01. This work was also supported by the Office of the Assistant Secretary of Defense for Health Affairs through the Pancreatic Cancer Research Program under Award No. W81XWH-12-1-0220. Opinions, interpretations, conclusions, and recommendations are those of the author and are not necessarily endorsed by the Department of Defense. We thank Dr Tim D Eubank (Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA) for the valuable support with angiogenesis study. We thank Dr Lloye Dillon (OncoTAB, Inc., Charlotte, NC, USA) for the critical review of the manuscript. We thank all the technicians in the animal facility for their assistance in maintaining our colonies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Mukherjee.

Ethics declarations

Competing interests

Dr Pinku Mukherjee is a board member in OncoTab. Dr Lopamudra Das Roy is an employee of OncoTab. The other authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, R., Curry, J., Roy, L. et al. A novel association of neuropilin-1 and MUC1 in pancreatic ductal adenocarcinoma: role in induction of VEGF signaling and angiogenesis. Oncogene 35, 5608–5618 (2016). https://doi.org/10.1038/onc.2015.516

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2015.516

This article is cited by

Search

Quick links